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When Externalities Collide: Influenza and Pollution†

By Joshua Graff Zivin, Matthew Neidell, 
Nicholas J. Sanders, and Gregor Singer*

Influenza and air pollution each pose significant health risks with 
global economic consequences. Their shared etiological pathways 
present a case of compounding health risk via interacting externali-
ties. Using instrumental variables based on changing wind direction, 
we show that increased levels of contemporaneous pollution increase 
influenza hospitalizations. We exploit random variation in effective-
ness of the influenza vaccine as an additional instrument to show that 
vaccine protection neutralizes this relationship. Thus, pollution con-
trol and vaccination campaigns jointly provide greater returns than 
those implied by addressing either in isolation. We show the impor-
tance of this consideration in addressing observed gaps in influenza 
incidence by race. (JEL D62, I12, J15, Q51, Q53)

Influenza (flu) and air pollution are significant public health risks that impact 
nations around the world. The flu causes an estimated  three to five million severe 

cases per year and nearly half a million deaths (Lambert and Fauci 2010; Iuliano 
et al. 2018). Air pollution causes 4.5 million annual deaths (Cohen et al. 2017), with 
annual economic costs estimated to exceed US$800 billion in the United States 
alone (Putri et al. 2018; Tschofen, Azevedo, and Muller 2019). While public health 
policies to address these issues are often considered in isolation, both share common 
etiological pathways through which they harm human health.

Interactions between the flu and pollution are an illustrative economic case of 
compounding risk from interacting externalities. Influenza is an infectious disease 
whereby the actions of one infected individual impose negative externalities on 
 others by increasing risk of infection, while air pollution is a negative externality of 
economic activity. Our analysis demonstrates that policies to address these distinct 
externalities have significant interactive effects: the flu vaccine can protect against 
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certain harms from air pollution, and reduced levels of air pollution lessen the 
 harmful effects of influenza exposure. Thus, the seemingly disparate policy actions 
of pollution control and expanded vaccination may jointly provide greater returns 
than when studied in isolation.

We begin our analysis by exploring the relationship between air pollution and 
influenza. Exposure to air pollution can affect influenza severity (Jaspers et al. 2005; 
Lee et al. 2014) and, to a lesser degree, its spread (Chen et al. 2010). We extend the 
 cross-sectional epidemiological literature1 to establish a causal relationship between 
air pollution and flu cases. We use  patient-level administrative data on inpatient hospi-
talizations from  2007 to 2017 across 21 US states, which allows us to focus on cases 
with a definitive influenza diagnosis.2 We address the identification challenge that 
vaccine  take-up and pollution exposure are often endogenously determined by using a 
dual instrumental variables approach. We first estimate econometric models with spa-
tial and temporal fixed effects to control for numerous unobservable factors and then 
build on the pioneering work of Deryugina et al. (2019) by using plausibly exogenous 
variation in wind directions as an instrument for pollution. We find that higher pollu-
tion levels significantly increase flu inpatient hospitalizations; a  one standard devia-
tion increase in the monthly air quality index (AQI) (10. 9-unit increase in our data) 
amounts to approximately 35.7 percent additional  flu-related inpatient hospitalizations 
in the United States during influenza season. Compared to the effect of air pollution 
on all respiratory hospitalizations, our findings suggest influenza accounts for around 
18 percent of all air  pollution-induced respiratory inpatient hospitalizations.

Next, we explore whether influenza vaccine protection, which we define as a 
combination of vaccine  take-up and effectiveness, moderates the estimated relation-
ship above. As vaccine  take-up can be endogenous across both time and location, we 
instrument for vaccine protection using vaccine effectiveness weighted by  influenza 
susceptibility (in addition to using our instrument for pollution). Effectiveness of 
the flu vaccine varies from year to year: producers forecast viral strain match months 
ahead of time, and antigenic drift or shift induces random deviations in realized 
match quality.3 This makes the random draw of the viral match orthogonal to unob-
served determinants of health, allowing us to identify a causal relationship between 
the vaccine and health harms from pollution. The orthogonality of vaccine effective-
ness also offers an additional test that pollution has a causal effect on flu admissions. 
If a vaccine designed specifically to protect against the flu diminishes the impact of 
pollution on influenza hospital admissions, then it must be the case that pollution 
contributes to influenza hospitalizations. When we include an interaction between 
air pollution and vaccine protection, we find that the flu vaccine offers significant 
protection from  influenza-related costs of pollution.4 Vaccine protection levels close 

1 See, for example, Brauer et al. (2002); Wong et al. (2009); Chen et al. (2010); Liang et al. (2014); and the 
important economic history paper by Clay, Lewis, and Severnini (2018). In a study of the Spanish flu in 1918, Clay, 
Lewis, and Severnini (2018) show that cities with higher  coal-fired power generating capacity saw higher mortality 
rates, potentially through exposure to higher air pollution.

2 Estimation based simply on physician encounters is more difficult, as influenza testing is not conducted sys-
tematically, and reporting of positive cases is not mandatory for this patient population.

3 Other papers using similar variation include Ward (2014) and White (2021).
4 Access to health care may ameliorate impacts of adverse environmental conditions more generally. Mullins 

and White (2020) show that better access to acute care can help protect against health harms from extreme temperature.
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to the average across time in our sample fully neutralize the relationship between 
pollution and additional flu hospitalizations.

Given the unequal burden of both flu and pollution exposure across society, 
we also explore results by race and ethnicity. Both of our main findings—that air 
pollution increases flu hospitalizations and that vaccine protection moderates this 
relationship—are consistent across these dimensions. Combined with evidence of 
significant differences in flu incidence and severity by race (e.g., Quinn et al. 2011), 
our results suggest that the  well-established differences in ambient pollution con-
centrations across racial and ethnic groups (e.g., Banzhaf, Ma, and Timmins 2019; 
Colmer et al. 2020; Currie, Voorheis, and Walker 2020) serve as an important mech-
anism driving disparities in influenza outcomes across such groups. Moreover, since 
flu vaccines protect against some  pollution-induced harms, our results imply that the 
private and external benefits from vaccines are considerably higher in communities 
disproportionately exposed to poor air quality. Our source of exogenous variation in 
vulnerability to pollution through vaccine effectiveness also contributes to the litera-
ture on the distribution of environmental damages that depends on not only exposure 
but also vulnerability (Hsiang et al. 2019; Deryugina et al. 2021).

An important feature of our context is that the spreads of influenza and pollu-
tion are externalities. As externalities, they justify government intervention in the 
form of policies, such as increased vaccine  take-up and improved air quality.5 The 
interaction of the two suggests that the seemingly disparate policy actions of pol-
lution control and vaccination campaigns jointly provide greater returns than those 
implied by addressing either in isolation. A back-of-the-envelope calculation sug-
gests a 10 percent (3.5 AQI points) reduction in the AQI in a historically ineffective 
vaccine year (11 percent vaccine  take-up adjusted for effectiveness) would avert 
16.6 percent of all  influenza-associated hospitalizations across the United States. 
Meanwhile, a 10 percent improvement in vaccine  take-up at the average vaccine 
effectiveness (or, equivalently, a 10 percent improvement in vaccine effectiveness 
at the average vaccine  take-up) in a historically polluted year (38.2 AQI) would 
avert 34.6 percent of  pollution-driven influenza hospitalizations. The optimal mix 
of these policies will depend on relative costs as well as the spillover benefits each 
may generate beyond influenza.

The paper proceeds as follows. We begin by describing potential biological mech-
anisms and our data and present why they are particularly  well suited to addressing 
the question of interacting externalities (Section I). We then discuss our economet-
ric model and describe in detail the various instruments we use to address issues of 
endogeneity and measurement error (Section II). After we present our main results 
and explore variations in our model assumptions, we discuss the implications of our 
findings, in the context of both our analysis and the larger question of social welfare 
maximization (Section III), before we conclude (Section IV).

5 A similar logic applies to the more difficult task of improving vaccine effectiveness. In that case, policies are 
more likely to utilize the standard push-and-pull mechanisms used to overcome the underinvestment problem that 
arises due to the public good nature of scientific knowledge (Kremer and Williams 2010).
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I. Background and Data

A. Potential Biological Mechanisms

The primary channel through which air pollution could affect influenza hospi-
talizations is increasing the severity of influenza. Like smoking (Han et al. 2019), 
air pollution can impair the respiratory functioning of patients, e.g., by damaging 
the respiratory epithelium, thereby facilitating the progression of influenza virus 
beyond the epithelial barrier into the lungs (Diamond, Legarda, and Ryan 2000; 
Jaspers et  al. 2005; Ciencewicki and  Jaspers 2007;  Rivas-Santiago et  al. 2015). 
Existing medical research finds that exposing in vitro respiratory epithelial cells 
to air pollution increases the susceptibility and penetration of influenza (Jaspers 
et al. 2005) and that experimental exposure of mice to air pollution before influenza 
infections increases morbidity and mortality (Hahon et al. 1985; Lee et al. 2014).

There is also some suggestive evidence that air pollution could affect influenza 
hospitalizations through modest increases in the spread of influenza. Like humidity 
and temperature (Lowen et al. 2007; Shaman and Kohn 2009; Shaman et al. 2010; 
Ijaz et al. 1985; Casanova et al. 2010), air pollution particles could extend the air-
borne survival of viruses outside the body (Ijaz et al. 1985; Tellier 2009; Chen et al. 
2010; Khare and Marr 2015; Lou et al. 2017; Wolkoff 2018) and thus increase the 
probability of disease transmission.

B. Data

We combine data from multiple sources on health outcomes, pollution concentra-
tions, vaccine information, and weather variables.

Inpatient Hospitalizations.—Our primary health outcome is inpatient hospital-
izations for influenza. We use  patient-level data on inpatient hospitalizations from 
the Healthcare Cost and Utilization Project (HCUP 2018b). The HCUP data cover 
the universe of hospital admissions in the reporting states. While Medicare data, an 
alternative popular data source, cover the entire United States, the advantage of the 
HCUP data is that they cover all age groups, not only the elderly. We focus on influ-
enza cases by using patient-level information on diagnosed diseases per International 
Classification of Diseases (ICD) codes.6 We limit analysis to data from 2007 to 2017, 
for which we also have detailed vaccine effectiveness data available. This gives us an 
unbalanced panel of 21 US states, with an average of 5.5 years of observations per 
state (see Table A.1 in online Appendix A.1 for details on data availability by state and 
year). Figure A.1 in the online Appendix shows that the HCUP data is broadly repre-
sentative of US data by comparing distributions of several  sociodemographic variables 
across counties in our HCUP data with distributions across all US counties.

6 We exclude patients whose zip code is from a different state than the hospital in which they are treated.
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We define our outcome as the count of inpatient admissions per  county-year-month 
where the ICD code indicates influenza.7 Given the presence of primary and sec-
ondary diagnosis codes, we conduct analyses using three possible classifications of 
flu admissions: cases where (i) the only diagnosis is influenza (most restrictive), (ii) 
any diagnosis is influenza (least restrictive), and (iii) the primary diagnosis is influ-
enza. The third option reflects a middle ground that we use as our baseline outcome.

We focus on the influenza season, which the US Centers for Disease Control 
and Prevention (CDC) defines as October to March, and explore results extend-
ing the season in online Appendix A.3. Figure 1, panel A shows the seasonal-
ity of inpatient hospitalizations in our data, which matches closely with general 
 CDC-reported  influenza-like illnesses (see Table  A.2 in online Appendix A.1). 
Based on month of admission and patient zip code, we aggregate hospitalization 
data to the  county-year-month level and assign a zero value to counties in months 
with no reported influenza admission, conditional on reporting data in the given 
year.8 During the influenza season, 54 percent of  county-year-months have no 
reported  influenza-related hospital admissions in the HCUP data, and our results are 
robust to the inclusion or exclusion of zero-valued  county-year-months. To compare 
our main results with the more general effect of air pollution on any respiratory 
hospitalization (including influenza), we also construct a variable that contains the 
count of inpatient hospitalizations where the primary diagnosis is any respiratory 
diagnosis.9 Finally, for a falsification test, we use primary ICD codes associated 
with osteoarthritis as an outcome variable, which is unlikely to be affected by air 
quality and influenza.10

Air Quality.—As our measure of pollution, we begin with the US Environmental 
Protection Agency’s (EPA’s) (2020) AQI at the  county-day level, which we aggre-
gate to  county-by-year-by-month to match hospitalization outcomes.11 We focus on 
the AQI as a summary measure of overall air quality, based on the primary criteria 
pollutants specified in the Clean Air Act.12 We do so as the high degree of correlation 
between several individual pollutants makes it challenging to separately  identify the 

7 We use the Clinical Classifications Software from the Agency for Healthcare Research and Quality (AHRQ) 
to classify relevant influenza ICD codes. These are all  five-digit ICD codes grouped under the following  three-digit 
 ICD-9-CM codes: 487, 488; and, for the period from October 2015 when the system was changed to  ICD-10-CM, 
the following  three-digit  ICD-10-CM codes: J09, J10, J11.

8 Put another way, we only impute zeros for counties and  year-months in states that report data in that given year 
but have zero influenza hospitalizations in a given month. We use the crosswalk from zip codes to counties from the 
US Department of Housing and Urban Development (Din and Wilson 2020).

9 These are all  five-digit ICD codes grouped under the following  two-digit  ICD-9-CM codes: 46, 47, 48, 49, 50, 
51; and the following  two-digit  ICD-10-CM codes: J0, J1, J2, J3, J4, J5, J6, J7, J8, J9.

10 Osteoarthritis consists of all five-digit ICD codes grouped under the following three-digit  ICD-9-CM codes: 
715, V134; and the following  three-digit  ICD-10-CM codes: M15, M16, M17, M18, M19. We also show effects for 
all disease groupings as additional robustness checks in the online Appendix.

11 The EPA  preaggregates data to the daily county level in the case of multiple monitors per county. For missing 
 county-year-months, we take the average value of the adjacent counties in the same month. We winsorize the AQI 
at the top and bottom 1 percent for the main analysis and show robust results to both data cleaning choices in online 
Appendix A.3.

12 The AQI captures pollution from particulate matter (PM2.5 or PM10), sulfur dioxide (SO   2  ), carbon mon-
oxide (CO), nitrogen dioxide (NO   2  ) and ozone (O   3  ). See online Appendix A.1 for descriptive statistics. The EPA 
provides further details on AQI calculation in EPA (2018).
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effect of each pollutant independently. We note that most of the “forcing” pollutant 
that drives variation in the AQI in our setting is PM2.5.

Weather, Wind Directions, and Inversions.—To address weather as a confounder, 
we use monthly weather averages from Xia et al. (2012); Mocko and NASA/GSFC/
HSL (2012), including temperature, specifi c humidity, vertical and horizontal wind 
speed, and precipitation at the 0.125-by-0.125-degree level, all aggregated up to the 
 county-by-year-by-month level.

To construct our main instrument for pollution, we construct wind direction for 
a  county-year-month by taking the average horizontal (ui) and vertical (vi) wind 

Figure 1. Descriptive Figures on Influenza Inpatient Hospitalizations and Vaccine  Take-up and 
Effectiveness

Notes: Panel A shows the average count of infl uenza inpatient hospitalizations per  county-month in the HCUP 
(2018b) data. Panel B shows the age group shares of infl uenza inpatient admissions as well as age  group–specifi c 
vaccine  take-up, both pooled across states and time. Panel C plots (raw) reported vaccine effectiveness for each age 
group over infl uenza seasons (with the exception of 2008/2009, where no data are available). The thick black line 
plots our weighted measure of overall vaccine effectiveness. Panel D plots vaccine protection averaged across states 
as the thick line. The bands illustrate the variation within each season across states by plotting the states with the 
maximum and minimum vaccine protection in each season.
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components from the monthly raw data and calculating the average angle the wind 
is blowing from as  WDI R i   = 180/π arctan  2 (− u i  , − v i  )  .13

Temperature inversions can also influence  ground-level pollution levels (Arceo, 
Hanna, and Oliva 2016), which allows us to use inversions as an additional pollu-
tion instrument. To calculate inversions, we use daily  three-dimensional temperature 
averages between midnight and 6 am at each location on each day from the Global 
Modeling and Assimilation Office (2015), regridded to the 0.25-by-0.25-degree 
level. We use the difference in temperature between the two pressure levels closest 
to the surface at each location and average this difference up to the  county-day level. 
We then calculate the share of days with inversions in a  county-year-month as the 
share of days when the difference between the layer further away from the surface 
and the layer closest to the surface is positive—i.e., the temperature rises with alti-
tude. We calculate the average strength of inversion in a  county-year-month as the 
average difference in temperature between the two altitude levels on the days where 
inversions are present.

Vaccine Take-up and Effectiveness.—We obtain average vaccine  take-up rates 
( VR ) by state, season, and age group or racial group from CDC (2008, 2009, 2015, 
2020), Lu et al. (2013), and Schiller and Euler (2009). Figure 1, panel B shows that 
on average, vaccine  take-up is highest among those 65 years and older or those 8 
years and younger. Figure A.4a in online Appendix A.1 shows temporal variation in 
vaccine  take-up rates by age group, and Figure A.4b by race. Figure A.4c shows spa-
tial variation by taking a  cross section of vaccine  take-up rates among those 65 years 
and older across different states in a given influenza season, in this case 2009/2010. 
The figures illustrate that the variation in vaccine  take-up is larger across age groups 
than across racial groups, time, or space.

We obtain measures of vaccine effectiveness by influenza season and age group, 
 V E    raw  , from the studies underlying CDC estimates (CDC 2019), available begin-
ning in the 2007/2008 season (Belongia et al. 2011; Griffin et al. 2011; Treanor 
et al. 2012; Ohmit et al. 2014; McLean et al. 2015; Gaglani et al. 2016; Zimmerman 
et al. 2016; Jackson et al. 2017; Flannery et al. 2019; Rolfes et al. 2019; Flannery 
et al. 2020) with the exception of the 2008/2009 season.14 These studies measure 
vaccine effectiveness as the  vaccination-induced percentage reduction in the odds 
of testing positive for influenza conditional on having  influenza-like symptoms. One 
can interpret vaccine effectiveness as the approximate share of vaccinated people 
who do not test positive but would have absent the vaccine.15

Figure 1, panel C plots  age-specific vaccine effectiveness against influenza sea-
son, showing variation across both seasons and age groups. Across seasons, the 
match between circulating viral strains and the vaccines based on forecasts is imper-
fect and varies due to antigenic drift. Within a season, the match can be of different 
quality for different age groups due to “original antigenic sin” (Francis 1960); the 

13 We calculate wind speed for our control variables as  WSPEE D i   =  √ 
_

  u  i  
2  +  v  i  

2    .
14 The CDC measures vaccine effectiveness across influenza seasons rather than calendar years, as seasons 

overlap calendar years (e.g.,  October–December for year  y  and  January–March for year  y + 1 .
15 The odds ratio is approximately the relative risk due to a small number of influenza positive cases (Zhang 

and Kai 1998).
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first influenza strain to which the immune system is exposed imprints  immunological 
memory with that specific strain, such that different generations with different anti-
genic imprints respond differently to new vaccines and strains within years.

Constructing Vaccine Protection.—The share of people protected by the vac-
cine in each season and state is a combination of  take-up rate,  VR , and age  group–
weighted vaccine effectiveness,  VE . As an example, for a group with homogeneous 
effects from exposure, if 50 percent of people are vaccinated but the vaccine is only 
30 percent effective, the effective vaccine protection ( VP ) is the same as when only 
30 percent of people are vaccinated but the vaccine is 50 percent effective. For 
groups with heterogeneous vulnerability, aggregate hospitalizations also depend on 
whether those individuals that are more vulnerable than others have a higher  take-up 
rate or vaccine effectiveness. An  80-year-old without a vaccine, for example, is much 
more likely to be hospitalized with influenza than a  30-year-old without a vaccine. 
Figure 1, panel B shows hospitalization incidence is highest for two age groups:  65 
years and older and  8 years and younger.16 To construct a  population-level measure 
of vaccine protection that accounts for such differences in vulnerability, we weight 
 age-specific vaccine  take-up rates and vaccine effectiveness by influenza hospital-
ization shares of each age group:

(1)  V P cs   =   1 _________ 
 ∑ a  

 
    (  ‾ H S a    ) 

    ∑ 
a
  

 

    V E  sa  
 raw  × V R csa   ×   ‾ H S a    , 

where  c  denotes counties ( V R csa    varies at the state level, but we index by counties 
for simpler notation in the following sections),  s  denotes influenza seasons, and  a  
denotes age groups. Hospitalization weights    ‾ H S a      are a simple average across influ-
enza seasons  s , i.e.,    ‾ H S a     =   1 _ S    ∑ s  

 
    H S sa   , and the first term  1/ ∑ a  

 
    (  ‾ H S a    )   ensures that 

the age weights sum to one, such that overall hospitalizations do not affect our 
values of  V P cs   . We plot  V P cs    averaged across states in Figure 1, panel D, along with 
the  V P cs    of the state with the highest and lowest  V P cs    in each influenza season. The 
minimum of  V P cs    is 0.08, and the maximum is 0.33.

Since  VP  is constant within the season, vaccination rates  V R csa    that differ across 
states solely drive  cross-sectional spatial variation in  V P cs   . The sources of temporal 
variation in  V P cs    are both vaccination rates,  V R csa   , and vaccine effectiveness,  V E  sa  

 raw  , 
which vary across influenza seasons. Equation (1) shows that a 10 percent increase 
in  V P cs    can be the result of either a 10 percent increase in vaccine rates in all age 
groups or a 10 percent increase in vaccine effectiveness in all age groups (or some 
combination of both effects). For our analysis of heterogeneity across different age 
groups, we only use vaccination rates and vaccine effectiveness for the relevant 
age groups in constructing  V P cs   . For heterogeneity analysis across different racial 
groups, we use our overall measure of vaccine protection scaled by the ratio of 
race-specific  take-up in a season to overall vaccine  take-up in a season.

16 We construct groups with these age cutoffs because they coincide with the common age cutoffs in vaccine 
effectiveness studies.



328 AMERICAN ECONOMIC JOURNAL: APPLIED ECONOMICS APRIL 2023

Mortality and Emergency Department Visits.—Although our primary focus is on 
inpatient hospitalizations, we also extend our analysis to consider  influenza-related 
emergency department (ED) visits and mortality. Data on visits to EDs are from 
HCUP (2018a) and have overlapping spatial coverage with our main inpatient data. 
Individual-level mortality data from NCHS (2019) cover every county in the United 
States and includes deaths that happen inside or outside of hospitals. For both ED 
visits and mortality, we count every hospitalization or death with influenza as pri-
mary cause as above and aggregate to the  county-by-year-by-month level.

 Sociodemographics.—We use employment counts at the  county-by-year-by- 
month level from the Bureau of Labor Statistics (2021) as an additional control in 
robustness checks. Our analysis of policy implications utilizes county population 
data by race from the 2010 US census (US Census Bureau 2020) and county median 
income data from Chetty et al. (2018).

II. Empirical Strategy

Given the nature of our outcome variables, we estimate count models as our pri-
mary specification, though we also estimate linear models as a specification check. 
We estimate the relationship between the count of  influenza-related inpatient hospi-
talizations   H cym    and the lagged air quality index  AQ I cym−1    at the county  c –by–year  y 
–by–calendar month  m  level using the following conditional exponential mean func-
tion (consistent with a Poisson count data model):

(2)    E [ H cym   | AQ I cym−1  ,  X cym  ,  γ csy  ,  μ ym  ]  

   = exp (β  AQ I cym−1   +  X  cym  ′     δ  1   +  X  cym−1  ′    δ   2   +  γ csy   +  μ ym  ) . 

We lag the AQI one month to capture exposure to air pollution before hospital admis-
sion, and we control for a wide variety of both regional and temporal factors. Our 
preferred specification includes  county-by-season-by-year (  γ csy   ) and  year-by-month 
fixed effects (  μ ym   ). Since each influenza season  s  spans October through March 
and overlaps calendar years  y  and  y + 1 , the  county-by-season-by-year fixed 
effects (  γ csy   ) are tantamount to  county-by-quarter-by-year fixed effects.17 While 
 county-by-quarter-by-year fixed effects capture the bulk of climatic differences 
across counties, we also include contemporaneous weather controls   X cym    and lagged 
weather controls   X cym−1    to address the links between both influenza and weather 
(temperature and humidity can influence influenza transmission rates) and weather 
and pollution (different climatic conditions can lead to different levels of air qual-
ity) within  county-quarter-years.18 Note that our outcome variable is the count of 

17 The  county-by-season-by-year fixed effects (  γ csy   ) are equivalent to including  county-by-year and 
 county-by-season fixed effects separately.

18 This includes information on temperature, specific humidity, precipitation, and wind speed. Temperature and 
humidity have been shown to affect both virus survival (Lowen et al. 2007; Shaman and Kohn 2009; Shaman et al. 
2010; Casanova et al. 2010; Harper 1961) and air pollution (Ijaz et al. 1985; Lou et al. 2017; Greenburg et al. 1967). 
In our baseline model, we include five quintile bins for temperature (C), five quintile bins of specific humidity, and 
linear terms for precipitation and wind speed, all of which include contemporaneous and lagged versions.
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influenza hospitalizations, but inclusion of our fixed effects in equation (2) ensures 
that our estimates are equivalent to recovering the effect on hospitalization rates per 
capita.19

 County-by-season-by-year (or  county-by-quarter-by-year) effects   γ csy    control for 
differences in unobserved confounders that influence pollution exposure and health 
outcomes across counties separately for every  quarter-by-year, such as demograph-
ics,  socioeconomic factors, or health-care access and protocols. This also addresses 
a possible concern due to potential variation in random diagnostic influenza testing 
in hospitals that could mask true influenza rates. Our fixed effects absorb potential 
bias from discrepancy between actual and observed hospitalizations as long as the 
ratio between them is constant within  county-quarter-years and/or  year-months.20 
 Year-by-month fixed effects control for seasonality and general monthly trends 
within each year in both influenza and pollution. For example, two common lung 
irritants included in the AQI, particulate matter and carbon monoxide, peak in win-
ter months much like influenza admissions;  year-by-month fixed effects capture 
such seasonality. In robustness checks, we examine models using alternative fixed 
effects specifications.

Given the included fixed effects, two remaining threats to identification are unob-
served confounding within each  county-by-quarter-by-year cell and measurement 
error in pollution assignment. For example, increased economic activity and inter-
action between people at the local level could drive both air pollution and influenza 
infections. We control for lagged employment at the  county-by-year-by-month level 
in our regressions as one approach, but this may not fully capture this relationship. 
Measurement error may arise because of the sparse nature of pollution monitors. To 
address these issues, our main strategy is to employ instrumental variables for air 
quality.

A. Instrumenting for Air Quality

We take an approach conceptually akin to that of Deryugina et  al. (2019) by 
exploiting changes in wind direction as an instrument for the AQI. The idea behind 
the instrument is that wind blowing from a particular direction moves around the pol-
lution internal to the county but also brings in external pollution. Online Appendix 
Figure A.5 provides an illustration using Suffolk County, which contains the city of 
Boston, as an example. The polar plot indicates that monthly AQI is much higher 
when prevailing winds are blowing from the southwest, which is the direction of 
major polluting sources along the Eastern Seaboard. The AQI is, however, much 

19 Influenza hospitalizations rates   H  cym   rates   and counts   H cym    relate in the following way:   H  cym   rates  =  H cym  /Po p csy   , 
where  Po p csy    is county population in each  county-season-year cell. We can multiply both sides of equation (2) by  

exp (log (1/Po p csy  ) )   such that our estimation recovers the effect on   H  cym   rates   as dependent variable and the fixed effects 

absorb  exp (log (1/Po p csy  ) )  .
20 Suppose actual (unobserved) influenza hospitalizations   H  cym   actual   and measured diagnosed influenza hospi-

talizations   H cym    relate in the following way:   H  cym   actual  =  H cym   ×  R csy   ×  R ym   , where   R csy   ×  R ym    captures arbitrary 
discrepancy between actual and observed hospitalizations. If we insert this relationship in equation (2), we can 
multiply both sides by  exp (log ( R csy  )  + log ( R ym  ) )   such that our estimation recovers the effect on the unobserved   
H  cym   actual   as dependent variable and the fixed effects absorb  exp (log ( R csy  )  + log ( R ym  ) )  .
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lower when prevailing winds are blowing from the east, which brings in cleaner 
air from the ocean. We are not using these values directly as our instrument for air 
pollution, as individuals may sort based on prevailing wind patterns. Instead, we use 
monthly changes in wind directions as our source of variation that shifts pollution, 
net of average pollution in the county. For example, if prevailing winds change from 
 southwest to east in Boston, our instrument would shift pollution down for that 
particular month, net of average pollution levels in Boston in that  year-quarter, con-
ditional on our fixed effects and controls. The identifying assumption is that, con-
ditional on our weather controls and fixed effects, wind direction affects influenza 
hospitalizations only through its effect on the AQI but does not have a direct effect 
on hospitalizations. Those exogenously determined changes in wind direction (con-
ditional on wind speed, other weather controls, and the various fixed effects) result 
in changes in pollution levels in a neighborhood that are likely to be uncorrelated 
with local determinants of pollution.

While we borrow the premise of this design from Deryugina et al. (2019), we 
modify the precise construction of the instruments. Specifically, Deryugina et al. 
(2019) construct instruments (  Z  i  

D    ) by using dummy variables for wind direction 
bins  WDI R  i  

  q   (e.g.,  WDI R  i  
 NW   for when wind is blowing from the  northwest for obser-

vation  i  belonging to a particular county in a particular point in time) interacted with 
geographical region–level indicators   G c   :   Z  i  

D  =  ∑ c  
 
     ∑ q  

 
    WDI R  i  

  q  ×  G c   . One chal-
lenge in constructing this set of instruments is the choice of geographical granularity 
for   G c   . On the one hand, if   G c    are large regions including multiple counties, a par-
ticular wind direction requires that pollution shifts in the same direction and to the 
same degree for all counties in the same group   G c   . Counties just north or just south 
of an urban center, however, are likely to receive the pollution shock when wind 
blows from the opposite direction rather than from the same direction. Similarly, 
a county south of a large urban center and a county south of a small urban center 
should receive a pollution shock when wind is blowing from the north, but the size 
of the pollution shock likely differs. On the other hand, if   G c    are small entities—e.g., 
counties themselves—then each county is allowed to have different pollution shocks 
in different sizes from different wind directions, but the set of instruments grows 
larger than the number of panels or counties   N c   . This can lead to computational 
difficulties and inefficient standard errors.21 Deryugina et  al. (2019) balance this 
 trade-off by selecting the granularity of   G c    based on a  k-means cluster algorithm, 
which generates groups that include nine counties on average.

We instead solve this  trade-off by using a different approach that allows full 
flexibility in how wind directions shift pollution in different counties (i.e.,   G c    at 
the county level) while dramatically reducing the number of instruments as well. 
Instead of interacting wind direction bins with county indicators, we transform the 
values in the wind direction dummies to capture both the sign and size of pollution 
shocks from changes in wind direction for each county. We do this in two steps. 
First, we create a new variable,   AQ I      q c    ̃   , which is pollution in county  c  averaged over 

21 Optimal ( two-step) generalized method of moments (GMM) with a clustered weighting matrix at the county 
level is infeasible, for example, because the number of instruments is larger than the number of clusters.
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the entire sample when wind is blowing from direction  q  in county  c , demeaned by 
the average pollution level in county  c :

(3)   AQ I      q c    ̃   =   1 _____ 
 ∑ i∈ q c    

 
   

     ∑ 
i∈ q c  

    AQ I  i  
  q c    −   1 _____ 

 ∑ i∈c  
 
   

    ∑ 
i∈c

      AQ I i  . 

We then use   AQ I      q c    ̃    to generate a set of instruments   Z  i  
q  , where each instrument 

corresponds to a particular wind direction (e.g.,   Z  i  
 NW    ) and the values of   Z  i  

q   are pop-
ulated by   AQ I      q c    ̃    if a particular observation  i  belongs to county  c  and the wind in this 
particular  year-month in this county is blowing from  q :

(4)         Z  i  
q  =  {  AQ I      q c    ̃  ,  if WDI R  i  

  q  = q and i ∈ c;    
0,

  
otherwise.

    

This generates   N q    instruments instead of   N q   ×  N c    instruments.   Z  i  
q   also addresses 

the two restrictions that arise when pooling multiple counties into groups. First, a 
single coefficient on a particular wind direction bin (e.g., the coefficient for   Z  i  

 NW    ) 
accounts for different signs of pollution shocks for different counties from the same 
wind direction. For example, a county  southeast of a major urban center is likely 
to have a positive value in   Z  i  

 NW  , whereas a county northwest of the major urban 
center is likely to have a negative value in   Z  i  

 NW  . Therefore, the coefficient for   Z  i  
 NW   

can shift pollution for the two counties into different directions. Second, a single 
coefficient on a particular wind direction bin also accounts for different sizes of 
pollution shocks. For example, a county  southeast of a large urban center may expe-
rience larger pollution shocks when wind blows from the northwest than a county 
 southeast of a small urban center. Since the average size of pollution shocks is cap-
tured in   Z  i  

 NW  , the same coefficient on   Z  i  
 NW   can shift pollution to a different extent in 

different counties.
We design the instruments   Z  i  

q   to capture pollution shocks that occur from changes 
in wind direction. Since we use  wind-induced pollution shocks averaged across the 
entire sample when constructing   Z  i  

q  , we do not capture individual events that gener-
ate pollution shocks that only occur in a particular  year-month in a particular county, 
which could be problematic since they may also correlate with influenza cases.22 
We also control for changes in weather that might affect influenza hospitalizations 
directly and correlate with changes in wind direction, such as temperature, humidity, 
precipitation, or wind speed. Finally, since we use a  one-month lagged AQI as our 
variable of interest, we use a  one-month lagged wind direction instrument to form 
our moment conditions.

For our baseline model, we use the four quadrants as wind direction bins but 
have also performed robustness checks with alternative numbers of wind  direction 

22 Identification does not use prevailing wind direction, which would not change across time and, as Deryugina 
et al. (2019) note, could lead to sorting or strategic placement of pollution monitors. Instead, our instrument uses 
 month-to-month changes in wind patterns in a given county-by-year-by-quarter cell, which should not affect sorting 
or monitor placement.
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bins. We estimate our instrumented model with a Poisson  GMM-IV procedure 
that accounts for fixed effects through  quasi-mean differencing, and we construct 
moment conditions with our set of instruments. Note that the  noninstrumented 
Poisson GMM estimates are numerically equivalent to a Poisson  pseudo-maximum 
likelihood (PPML) estimator.23 We cluster standard errors at the county level to 
allow for arbitrary heteroskedasticity and serial correlation. For our linear speci-
fication, we use the corresponding linear  GMM-IV procedure that is numerically 
equivalent to standard linear GMM optimization. We provide econometric details in 
online Appendix A.2.

As an expansion, we include further instruments for AQI based on thermal inver-
sions (Arceo, Hanna, and Oliva 2016). Typically, air is colder the farther it is from 
the earth’s surface. Thermal inversions appear when a warm air layer moves above 
a cold air layer, reducing air cycling and generating stagnant air conditions. While 
inversions do not directly affect health (conditional on temperature), they trap pol-
lutants closer to the ground, leading to increases in pollution concentrations.24 We 
use the share of days with inversions and the average strength of inversions at the 
 county-year-month level. We then interact both variables with a scaling variable that 
is the average county AQI across the entire sample. This allows inversions in more 
 pollution-intensive regions (e.g., large urban centers) to shift pollution more than in 
less  pollution-intensive regions (e.g., rural counties).

While our Poisson  GMM-IV fixed effects estimation does not have an explicit 
first-stage regression as in  two-stage least squares estimations, we can approximate 
a first stage by running a linear regression of AQI on our instruments and controls. 
Table A.3 in online Appendix A.3 shows that our wind instruments shift pollution 
with a  Kleibergen-Paap  F-stat of 176.8 (column 1).25 Inversions also shift pollu-
tion, however; the  Kleibergen-Paap  F-stat is lower at 8.6 when including inversions 
alone (column 4) and at 91 when including wind direction and inversion instruments 
simultaneously (column 7).26 For this reason, our preferred specification relies 
solely on the instruments based on wind direction, though we also show results with 
both sets of instruments.

B. Vaccines

To estimate the impact of vaccine protection ( V P cs   ) on the  pollution- 
hospitalization relationship, we modify equation (1) to include an interaction term 

23 We show the PPML (Correia, Guimarães, and Zylkin 2019) estimates in the online Appendix. The PPML 
point estimates are consistent as long as the conditional mean is correctly specified, irrespective of the distribution 
of the outcome or errors (Gourieroux et al. 1984). The PPML estimator performs well with a large number of zeros 
and over- or  underdispersion in the data (Silva and Tenreyro 2006, 2011).

24 We use inversions between midnight and 6 am to limit potential confounding through behavioral responses.
25 Note that all wind direction bins have a positive coefficient, because the values of the instrument are negative 

when a particular wind direction tends to blow in clean air for a particular county. The coefficients should converge 
to one as the sample size grows, through either the number of years of the number of counties. Table A.4 shows this 
pattern in a Monte Carlo simulation of the approximated first-stage regression.

26 Note that the sum of the two coefficients, the coefficient on the interaction between share of inversion days 
with the county average AQI (   ‾ AQI   ) and the coefficient on share of inversion days, is positive at the average of 
   ‾ AQI    (34.7), and the same holds for the strength of inversions.
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 AQ I cym−1   × V P cs   , noting that the base effect  V P cs    is absorbed in the fixed effects   
γ csy   :

(5)   E [ H cym   | AQ I cym−1  , V P cs  ,  X cym  ,  γ csy  ,  μ ym  ]  

      = exp ( β 1   AQ I cym−1   +  β   2   (AQ I cym−1   × V P cs  )  +  X  cym  ′    δ 1   

 +  X  cym−1  ′    δ   2   +  γ csy   +  μ ym  )  .

Several econometric challenges exist in evaluating how the influenza vaccine 
alters the effect of pollution on influenza. Recall that vaccine protection,  V P cs   , is 
a composite measure of vaccine  take-up and effectiveness. Individuals may reduce 
avoidance behavior if vaccinated,or be more likely to get the vaccine in seasons with 
more reported influenza cases, both of which attenuate the raw effect of the vaccine. 
Selection bias in vaccine  take-up may also pose a problem if the most susceptible 
or most cautious are more likely to seek out vaccines. To address these issues, we 
instrument for potentially endogenous vaccine protection ( V P cs   ) using exogenous 
vaccine effectiveness ( V E s   ). Our identifying variation exploits the natural variation 
in vaccine effectiveness, determined by the random variations in the quality of the 
match between the influenza vaccine and the viral strain in circulation.27 Note that 
at the time of vaccination, which is usually early in the influenza season, it is not 
yet known how effective the vaccine will turn out over the course of the season. 
Therefore, vaccine  take-up should generally not be affected by vaccine effective-
ness. We confirm this empirically by regressing  take-up on effectiveness separately 
for our five age groups and find no statistically significant association in any of 
the five regressions, with estimated implied elasticities close to zero (see online 
Appendix Table A.5).

Effectiveness based on antigenic drift is, in principle, orthogonal to unobserved 
determinants of health in a given year. This provides insights into how vaccines affect 
the  pollution-induced spread of influenza and provides a test of the causal effects 
of pollution on influenza. If vaccines moderate the effect of pollution on influenza, 
it must be that pollution causally relates to influenza hospitalizations, though we 
cannot distinguish between whether the vaccine is (i) reducing the probability that 
any  pollution-harmed individual is exposed to the flu due to external benefits from 
vaccination of others or (ii) changing the probability that a  pollution-harmed indi-
vidual contracts a severe case of flu when exposed.

To generate an overall measure of vaccine effectiveness ( V E s   ) to instrument for 
 V P cs   , we construct a weighted average of  time-varying age-specific raw vaccine 
effectiveness ( V E  sa  

 raw  , which Figure 1, panel C shows). The weights for age groups 
are  time invariant and capture the age groups where vaccine effectiveness matters 
relatively more: those with a greater tendency of hospitalization and those with 

27 See also Ward (2014) and White (2021), who, however, calculate vaccine effectiveness based on the names 
of the viral strains in the vaccine and in circulation, which, in contrast to our measure, do not take into account 
variations in vaccine effectiveness across age groups and imperfectly map into clinical measures of effectiveness.
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higher vaccine  take-up rates. Figure 1, panel B shows these weights and that both 
hospitalization incidence and vaccination rates are highest for those  65 years and 
older and  those 8 years and younger, the two most vulnerable groups in our sample. 
Our measure of vaccine effectiveness is

(6)  V E s   =   1 ________________  
 ∑ a  

 
     (  ‾ V R a     ×   ‾ H S a    ) 

    ∑ 
a
  

 

    V E  sa  
 raw  ×   ‾ V R a     ×   ‾ H S a    , 

where vaccine  take-up rate weights    ‾ V R a      and hospitalization shares    ‾ H S a      are sim-
ple averages across influenza seasons  s —e.g.,    ‾ V R a     =   1 _ S    ∑ s  

 
    V R sa   —and the first 

term  1/ ∑ a  
 
    (  ‾ V R a     ×   ‾ H S a    )   ensures that the age weights sum to one such that overall  

vaccine  take-up or hospitalizations do not affect our values of vaccine effectiveness. 
As we use  time-averaged hospitalization shares and vaccination rates, vaccine effec-
tiveness is the only source of temporal variation in our instrument.28 Figure 1, panel 
C shows that our final measure of weighted vaccine effectiveness ranges between 
0.17 and 0.51 during our study period.

By defining vaccine protection as a combination of vaccine effectiveness and 
vaccine  take-up, we interpret   β   2    as a change in either component, suggesting that 
policy can focus on either measure. This helps maintain a direct policy implication 
of our results—while random variation in vaccine effectiveness provides a com-
pelling identification strategy, policy efforts to improve it are met with limited suc-
cess. Vaccine  take-up rates, however, may be more amenable to policy intervention 
through efforts to reduce the costs of obtaining a vaccine or promote its benefits. 
With this policy lens in mind, we discuss changes in   β   2    as the effect of a relative 
increase in vaccine  take-up rates.

To estimate equation (5), we use the same Poisson  GMM-IV fixed effects esti-
mator as for equation (2), with wind direction instruments for the AQI. The moment 
conditions for our interaction term  AQI × VP  use the interaction of wind direc-
tion instruments with our  VE  instrument. Table A.3 in online Appendix A.3 shows 
that our wind instruments interacted with  VE  shift the interaction term with a 
 Kleibergen-Paap  F-stat of 35.3 (column 3).

III. Results and Discussion

A. Influenza Hospitalizations

Table 1 shows estimates from our Poisson GMM estimations. Coefficients repre-
sent the AQI  semielasticity of the count of inpatient hospitalizations with primary-di-
agnosis influenza within a  county-year-month or an approximate percentage change in 
inpatient counts per unit of AQI when estimates are sufficiently small. Estimates from 
column 1 in panel A correspond to equation (2), without using any instruments, and 

28 A potential threat to the exclusion criteria for our instrument occurs if shocks that increase the spread of influ-
enza (e.g., a sporting event associated with a local team, as in Stoecker, Sanders, and Barreca (2016)) also increase 
influenza mutation rates and thus weaken vaccine effectiveness. This concern is likely limited, as recent research 
suggests that random mutations during vaccine production, not from virus spread itself, drive mismatch of vaccines 
and strains in circulation. For discussion of this research, see Cohen (2017).
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imply a  1-unit increase in the monthly AQI associates with a 0.76 percent increase 
in influenza inpatient admissions. Column 1 in panel B shows that the estimate 
is larger when using instruments for the AQI based on wind direction. Given that 
the  noninstrumented estimates contain  county-by-quarter-by-year fixed effects, they 
likely control for many potential sources of confounding, such as residential sorting 
or economic activity. Much of the remaining bias in the  noninstrumented estimates 
is likely due to measurement error. If this error is  classical, estimates will be biased 
to the null, and the IV approach will generate larger (absolute) estimates. Our larger 
IV estimates are consistent with this, as well as the patterns found in Deryugina et al. 
(2019).29 Specifically, our IV approach finds that a  1-unit increase in the monthly 
AQI results in a 2.8 percent increase in influenza inpatient admissions. To put this 
estimate into a national context, a one standard deviation increase in AQI (10. 9-unit 

29 The  p-value of Hansen’s  J-statistic of overidentifying restrictions in column 1 in panel A is 0.53, so we cannot 
reject validity of the model.

Table 1—The Effect of Air Pollution on Severe Influenza Cases

Influenza is Influenza is Influenza is
primary ICD code any ICD code only ICD code

Panel A. Poisson GMM
(1) (2) (3) (4) (5) (6)

AQI 0.0076 0.034 0.0082 0.031 0.014 0.037
(0.0024) (0.0076) (0.0024) (0.0070) (0.0058) (0.020)

AQI × VP −0.14 −0.12 −0.13
(0.036) (0.032) (0.10)

Panel B. Poisson  GMM-IV
AQI 0.028 0.11 0.021 0.088 0.043 0.11

(0.0074) (0.026) (0.0069) (0.024) (0.017) (0.049)
AQI × VP −0.53 −0.41 −0.49

(0.16) (0.14) (0.32)

Observations 17,668 17,668 20,013 20,013 3,954 3,954
Mean of outcome 6.04 6.04 11.05 11.05 0.81 0.81
Mean of AQI 35.27 35.27 35.06 35.06 38.07 38.07
Mean of VP — 0.21 — 0.21 — 0.2
Mean of VE — 0.36 — 0.36 — 0.35

Notes: The dependent variable in columns  1–2 is the count of inpatient hospital admissions with influenza as the pri-
mary diagnosis within a  county-year-month. The dependent variable in columns  3–4 is the count of inpatient hospi-
tal admissions with influenza as any (primary or secondary) diagnosis within a  county-year-month. The dependent 
variable in columns  5–6 is the count of inpatient hospital admissions with influenza as the only diagnosis within a 
 county-year-month. We limit analysis to the influenza-intensive months of October through March, and our sam-
ple spans  2007–2017 with the exception of October 2008 to March 2009, where vaccine effectiveness data are not 
available. Vaccine protection (VP) is weighted by hospitalization shares across age groups and is measured between 
0 (low) and 1 (high). The results are from a Poisson GMM estimation with  county-by-season-by-year fixed effects 
and  year-by-month dummies as well as weather controls. Weather controls consist of five bins of temperature quin-
tiles, five bins of specific humidity quintiles, and linear terms for precipitation and wind speed. All weather vari-
ables are based on  county-year-month averages. The air quality index (AQI) is lagged one month, and a higher AQI 
means worse air quality. The columns in panel B use our instruments based on wind direction instead of the AQI to 
generate moment conditions, and  even-numbered columns additionally use our VE instrument instead of VP to form 
moment conditions. The number of included observations can vary across different outcomes due to fixed effects 
and varied counts in each  county-year-month cell. Standard errors in parentheses are clustered at the county level.
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increase in our data) amounts to approximately 27,182 (35.7 percent) additional 
inpatient hospitalizations for a  6-month influenza season in the United States.30

To explore the moderating role of the influenza vaccine, Figure  2 shows the 
 regression-adjusted relationship between AQI and influenza admissions separately 
in a sample with low vaccine protection in panel A and high vaccine protection in 
panel B. We determine each group using a median vaccine protection (0.21) sample 
split. The relationship between air quality and admissions rates is positively sloped 
in panel A, indicating that the AQI affects flu admissions when the vaccine is a 
bad strain match and/or vaccine  take-up is low. When vaccine protection is high, 
however, this relationship flattens almost completely, as panel B shows, suggesting 
that an effective vaccine with sufficient  take-up nullifies the relationship between 
pollution and the flu. This does not imply that a high vaccine protection eliminates 
all influenza hospitalizations or all  pollution-related respiratory hospitalizations. 
Rather,  sufficiently high vaccine effectiveness and  take-up eliminate those flu hospi-
talizations directly attributable to the negative shock of pollution.

To test for the moderating role of vaccine protection, we present estimates of 
equation (5) using our Poisson GMM framework in Table 1. Column 2 in panel 
A shows the estimates without using instruments, and column 2 in panel B uses 

30 We use the 10. 9-unit increase and the coefficient 0.028 for the relative increase  exp (0.028 × 10.9)  − 1 
= 0.3569 , and multiply it by the average inpatient admissions per  county-year-month (4.04), the total number of 
US county equivalents according to the US Census Bureau (3142) (United States Census Bureau 2018) and by the 
6 months within a influenza season. Note that we are using average admissions across our  pre-estimation sample 
of summary statistics from Table A.2 (4.04), which is lower than the average reported in the estimation sample in 
Table 1 (6.04), since a count model drops counties with zero-valued outcomes within the level of the fixed effect. 
This only counts cases with primary-diagnosis influenza, making this estimate of absolute numbers a lower bound. 
Using hospitalization with any influenza diagnosis (column 3) doubles the additional predicted cases because the 
base of hospital admissions is much larger.
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Figure 2. Air Quality and Vaccine Protection

Notes: Panels A and B show binned scatterplots with 30 bins and a linear regression on the underlying data. Each 
shows the correlation net of  county-by-season-by–year and month fixed effects as well as weather controls, where 
the vertical axis shows the residuals from a Poisson regression and the horizontal axis the residuals from a linear 
regression without instruments. The panels show the relationship for below- (A) and above-median (B) vaccine 
protection in the sample.



VOL. 15 NO. 2 337GRAFF ZIVIN ET AL.: INFLUENZA AND POLLUTION

our instruments based on wind direction for the AQI and our vaccine effectiveness 
instrument (VE) interacted with the wind direction instruments for the interaction 
term of AQI and vaccine protection (VP). The instrumented estimates are larger than 
the  noninstrumented estimates by around the same factor as for the  noninteracted 
results in column 1 in panel A and B. Vaccine protection substantially moderates 
 pollution-driven influenza cases. Our negative interaction coefficient in column 2 
in panel B implies that a vaccine protection of 21 percent, which coincides with the 
average vaccine protection in our sample (the maximum is 33 percent), nullifies the 
link between air pollution and influenza hospitalizations. This supports prior evi-
dence of thresholds in influenza vaccination where the positive external benefits are 
large enough to almost eliminate influenza spread even at incomplete vaccination 
 take-up and effectiveness (Boulier, Datta, and Goldfarb 2007; Ward 2014). In sea-
sons with poor viral match of the vaccine (see Figure 1, panel C), vaccine protection 
is substantially lower (see Figure 1, panel D). To compensate for a drop in vaccine 
effectiveness from the median (0.39) to the  twenty-fifth percentile (0.32), vaccine 
 take-up would need to increase by 18 percent across all age groups. Table A.6 in 
online Appendix A.3 provides reduced-form results where we include vaccine effec-
tiveness directly instead of instrumenting for vaccine protection.

In our baseline specifications in columns 1 and 2, we include only cases where the 
primary diagnosis is influenza, thus ignoring occurrences of influenza in secondary 
diagnoses. This likely misses some  influenza-related hospitalizations but is arguably 
more robust to  overcounting cases that might arise by including patients who suffer 
from different health conditions triggered by air pollution (e.g., asthma) and then 
happen to be tested for influenza upon hospital admission due to health protocols. 
To show robustness to different counting strategies, columns 3 and 4 repeat our 
analysis counting patients that have any (primary or secondary) influenza diagno-
sis. This yields an average number of influenza admissions per  county-year-month 
in our estimation sample that is roughly double (11.05) compared to our baseline 
approach (6.04). The estimated coefficients, which again reflect  semielasticities, are 
close to baseline results both for the level effect of AQI as well as the interaction 
with vaccine effectiveness. In columns 5 and 6, we use a more restrictive condition 
by counting hospital admissions where the only diagnosis is influenza. This reduces 
the average count of admissions per  county-year-month to 0.81 (the majority of 
influenza hospital admissions have further  influenza-induced complications—e.g., 
pneumonia). The estimated coefficients are again comparable to our baseline esti-
mates, though with larger standard errors given the considerable drop in sample size 
due to more cells with zero counts.

Table 2 explores heterogeneity by age and race using our Poisson  GMM-IV spec-
ifications (we show  noninstrumented results in Table A.7 in online Appendix A.3).31 
Columns 1 through 6 in panel A show results for three distinct age groups: up to age 
8, ages 9 through 64, and ages of at least 65 years, where the first and last reflect 

31 For our regressions with  age-specific outcomes in Table 2, we only use the vaccine  take-up rate and raw vac-
cine effectiveness data of the corresponding age groups for constructing our overall measure of vaccine protection 
(VP) and vaccine effectiveness (VE). We show means of VP and VE for each regression at the bottom of the table. 
We note that vaccines have private and external benefits, so vaccine  take-up of any one group generates positive 
spillovers to other groups.
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the more vulnerable groups.32 Patterns across the youngest and oldest groups are 
 similar to each other and consistent with our main results. The interaction with vac-
cine protection for the middle age group, however, is imprecise and positive. A pos-
itive point estimate on the interaction term implies that vaccines do not help reduce 
influenza hospitalizations due to air pollution but can still reduce influenza hospi-
talizations not driven by air pollution. The confidence intervals are large,  however, 
and overlap with the confidence intervals of the other age groups, so we draw little 
inference from this age group estimate.

32 We define these age splits based on the age splits available in the vaccine effectiveness measures.

Table 2—Heterogeneity by Age and Race

Panel A. By age (Poisson  GMM-IV)
≤ 8 years  9–64 years ≥ 65 years

(1) (2) (3) (4) (5) (6)
AQI 0.034 0.13 0.032 −0.039 0.0050 0.037

(0.0093) (0.051) (0.0080) (0.054) (0.013) (0.014)
AQI × VP −0.34 0.45 −0.33

(0.16) (0.34) (0.15)

Observations 10,593 10,593 13,984 13,984 13,619 13,619
Mean of outcome 1.89 1.89 2.76 2.76 3.51 3.51
Mean of AQI 36.51 36.51 35.7 35.7 35.5 35.5
Mean of VP — 0.31 — 0.16 — 0.2
Mean of VE — 0.48 — 0.4 — 0.3

Panel B. By race (Poisson  GMM-IV)
Black/Hispanic White

(1) (2) (3) (4)
AQI 0.024 0.086 0.040 0.13

(0.012) (0.035) (0.0070) (0.023)
AQI × VP −0.43 −0.56

(0.20) (0.13)

Observations 7,740 7,740 15,553 15,553
Mean of outcome 3.27 3.27 4.17 4.17
Mean of AQI 37.5 37.5 35.46 35.46
Mean of VP — 0.21 — 0.23
Mean of VE — 0.36 — 0.37

Notes: The dependent variable is the count of inpatient hospital admissions with influenza as primary diagnosis 
within a  county-year-month. The columns indicate which age (panel A) or race (panel B) subgroups are counted 
in the dependent variable. We limit analysis to the influenza-intensive months of October through March, and our 
sample spans  2007–2017 with the exception of October 2008 to March 2009, where vaccine effectiveness data are 
not available. Vaccine protection (VP) is weighted by hospitalization shares across age groups and is measured 
between 0 (low) and 1 (high). We only use the vaccine  take-up rates and raw vaccine effectiveness for the age 
groups indicated in each column in panel A. For the results by racial group in panel B, we use our VP scaled by the 
ratio of race specific to overall vaccine  take-up by season. The results are from Poisson  GMM-IV estimations with 
 county-by-season-by-year fixed effects and  year-by-month dummies as well as weather controls. Weather controls 
consist of five bins of temperature quintiles, five bins of specific humidity quintiles, and linear terms for precipita-
tion and wind speed. All weather variables are based on  county-year-month averages. The air quality index (AQI) 
is lagged one month, and a higher AQI means worse air quality. The results use our instruments based on wind 
direction instead of the AQI to generate moment conditions, and  even-numbered columns additionally use our VE 
instrument instead of VP to form moment conditions. The number of included observations can vary across differ-
ent outcomes due to fixed effects and varied counts in each  county-year-month cell. Standard errors in parentheses 
are clustered at the county level.
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Estimates are similar across racial and ethnic groups (Blacks/Hispanics and 
Whites in columns 1 to 4 in panel B), with overlapping confidence intervals.33 
Combining these results with  well-established racial and ethnic differences in pol-
lution exposure (Banzhaf, Ma, and  Timmins 2019; Colmer et  al. 2020; Currie, 
Voorheis, and Walker 2020) may help explain the higher influenza burdens experi-
enced by those communities (e.g., Quinn et al. 2011). As such, our results suggest 
that air quality control could be an additional policy lever to help reduce severe 
influenza cases among these vulnerable groups, particularly within those commu-
nities in which vaccine access is limited and reluctance to receive the vaccine is 
particularly high.34

Although we focus primarily on inpatient hospital admissions for influenza, 
Table 3 shows estimates of the effect of air pollution and vaccines on two alterna-
tive outcomes: ED visits and mortality. ED visits may pick up less severe cases of 
the flu, though visiting the ED can be plagued by selection concerns since they are 
more likely to serve as a source of primary care for groups with limited access to 
health care (Finkelstein et al. 2012). Despite the fact that our data on ED visits have 
slightly different geographical and temporal coverage than the data for inpatient 

33 We adjust vaccine protection by the seasonal ratio of vaccine  take-up of the particular ethnic group to overall 
vaccine  take-up, which results in a slightly higher mean of VP for Whites, as reported in the bottom of the table.

34 These benefits are in addition to any improvements in  pollution-related health not associated with influenza. 
See Deryugina et al. (2021) for a discussion of policy targeting regarding polluted areas and vulnerable people.

Table 3—The Effect of Air Pollution and Vaccines on Emergency Department Visits and Mortality

ED visits Mortality

Poisson GMM Poisson  GMM-IV Poisson GMM Poisson  GMM-IV

(1) (2) (3) (4) (5) (6) (7) (8)

AQI 0.018 0.059 0.038 0.11 0.011 0.028 0.0014 0.053
(0.0027) (0.010) (0.0071) (0.019) (0.0023) (0.0073) (0.0080) (0.029)

AQI × VP −0.22 −0.43 −0.088 −0.30
(0.047) (0.11) (0.036) (0.15)

Observations 10,049 10,049 10,049 10,049 23,126 23,126 23,126 23,126
Mean of outcome 38.4 38.4 38.4 38.4 0.96 0.96 0.96 0.96
Mean of AQI 35.3 35.3 35.3 35.3 37.41 37.41 37.41 37.41
Mean of VP — 0.21 — 0.21 — 0.2 — 0.2
Mean of VE — 0.37 — 0.37 — 0.35 — 0.35

Notes: The dependent variable is the count of ED visits (in columns 1 to 4) or the count of deaths (in columns 5 
to 6), all with influenza as primary diagnosis within a  county-year-month. We limit analysis to the influenza-inten-
sive months of October through March, and our sample spans  2007–2017 with the exception of October 2008 to 
March 2009, where vaccine effectiveness data are not available. Vaccine protection (VP) is weighted by hospital-
ization shares across age groups and is measured between 0 (low) and 1 (high). We only use the vaccine  take-up 
rates and raw vaccine effectiveness for the age groups indicated in each column. For the results by racial groups, we 
use our VP scaled by the ratio of race specific to overall vaccine  take-up by season. The results are from a Poisson 
GMM estimation with  county-by-season-by-year fixed effects and  year-by-month dummies as well as weather con-
trols. Weather controls consist of five bins of temperature quintiles, five bins of specific humidity quintiles, and 
linear terms for precipitation and wind speed. All weather variables are based on  county-year-month averages. 
The air quality index (AQI) is lagged one month, and a higher AQI means worse air quality. The columns indicat-
ing “ GMM-IV” use our instruments based on wind direction instead of the AQI to generate moment conditions, 
and  even-numbered columns additionally use our VE instrument instead of VP to form moment conditions. The 
number of included observations can vary across different outcomes due to fixed effects and varied counts in each 
 county-year-month cell. Standard errors in parentheses are clustered at the county level.
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hospitalizations, the estimates are close to our main results. In columns 5 to 8, we 
instead look at influenza deaths, which are less frequent than inpatient hospitaliza-
tions but also less subject to selection concerns.35 The estimates for mortality also 
show a similar pattern to our main results. Together, these suggest that air pollution 
and the protective role of vaccines each affect a wide range of flu case severity.

In Table 4 we perform three further tests. First, columns 1 and 2 explore robust-
ness to functional form by using a linear mean function, closer to standard OLS, 
in place of the exponential mean function consistent with a Poisson count model. 
Columns 1 and 2 in panel A show a linear GMM model without instruments (OLS), 
for a linear version of columns 1 and 2 in panel A of Table 1. Columns 1 and 2 in 
panel B show the IV as a linear version of columns 1 and 2 in panel B of Table 1. As 
in our baseline Poisson GMM model, the IV estimates in panel B are around three 
times larger than those in panel B. Since the point estimates now reflect level effects, 
we divide by the mean of the dependent variable to obtain percent effects that are 
more readily comparable to the estimates from the count model. Doing so, the linear 
estimate in column 1 in panel B of 0.18 translates to a 3 percent effect, which is very 
close to the estimate of 2.8 percent using the count model. Vaccine protection is 
also comparable in magnitude. In online Appendix Table A.8, we show equivalence 
of our Poisson GMM estimator (without instruments) with a PPML estimator, and 
we estimate a linear model using the inverse hyperbolic sine (IHS) of hospitaliza-
tions as our outcome. The estimates using the IHS are similar to  semielasticities 
(but, unlike the log function, allow for zeros) and can therefore be more directly 
compared with our baseline Poisson GMM estimates. The effect of 0.02 in column 
7 in online Appendix Table A.8 is close to our baseline effect of 0.028 in Table 1. 
Together, these results suggest that our estimates are largely insensitive to the func-
tional form choice of our dependent variable.

Second, we ask how the effect of air pollution on influenza hospitalization com-
pares to the effect on any respiratory hospitalization (including influenza) in columns 3 
and 4. Here we continue to use the linear models from columns 1 and 2, which has 
the benefit of making direct level effect comparisons, unlike the Poisson model, which 
provides relative percentage effects. As indicated in Table 4, the mean of hospitaliza-
tions with any respiratory hospitalization per  county-year-month (141.32) is much 
higher than for influenza hospitalizations alone (6.04). Panel A shows the effect on all 
respiratory hospitalizations without instruments, and panel B with instruments.36 The 
absolute effect of a  1-unit increase of the AQI on influenza hospitalizations (0.18, col-
umn 1 in panel B) is roughly  one-third of the size of the effect on all respiratory hospi-
talizations (0.5, column 3 in panel B).37 Assuming that outside of influenza season the 
effect on all respiratory hospitalizations remains the same but the effect on influenza 
hospitalizations drops to zero, influenza hospitalizations due to air pollution account 

35 Since the data on mortality cover the entire United States, these results also improve the representativeness of 
our main findings. The estimation sample size reported in the table is only slightly higher than for our main results 
because the mortality outcome has more zeros, resulting in more observations being dropped by the count model.

36 A negative but noisy interaction effect on all respiratory hospitalizations in column 4 in panel B is consistent 
with our vaccine effects, as the majority of hospitalizations for respiratory diseases are unrelated to influenza (e.g., 
asthma).

37 This is further corroborated when comparing the effect of air pollution on influenza with all other diagnoses 
groupings in online Appendix Figure A.6.
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for roughly 18 percent of all respiratory hospitalizations due to air pollution. This 
suggests that the increased incidence of influenza accounts for a sizable share of the 
health harms from air pollution. It also implies that greater vaccine strain matches 
and increased  take-up rates can reduce a sizable share of hospitalizations from air 
pollution.

Third, as a general specification test for our model, we perform a falsification test 
by repeating our analysis using an outcome we do not expect to be related to  pollution 
or vaccines. We choose to narrow our focus to osteoarthritis, which is unlikely to be 
related to  short-term variation in pollution. Our Poisson  GMM-IV results in column 5 
and 6 in panel B of Table 4 indicate precise zero coefficients on the effect of AQI and 
the interaction with vaccine protection, lending support to our model specification. 
As a more comprehensive test, online Appendix Figures A.6, A.7, and A.8 show our 
Poisson  GMM-IV estimates for all ICD disease groupings separately, as long as there 

Table 4—Linear Specification, All Respiratory Hospitalizations, and Osteoarthritis as 
Falsification Test

Influenza All respiratory
hospitalizations hospitalizations Osteoarthritis

Panel A. No instruments
Linear GMM Linear GMM Poisson GMM

(1) (2) (3) (4) (5) (6)

AQI 0.063 0.19 0.17 0.014 −0.00054 0.00019
(0.025) (0.073) (0.067) (0.16) (0.00027) (0.00084)

AQI × VP −0.61 0.72 −0.0034
(0.28) (0.69) (0.0041)

Panel B. With instruments
Linear  GMM-IV Linear  GMM-IV Poisson  GMM-IV

AQI 0.18 0.51 0.50 0.33 −0.0016 0.00069
(0.058) (0.16) (0.29) (0.38) (0.0014) (0.0029)

AQI × VP −1.88 −1.32 −0.015
(0.79) (2.17) (0.015)

Observations 17,668 17,668 24,596 24,596 24,255 24,255
Mean of outcome 6.04 6.04 141.32 141.32 43.51 43.51
Mean of AQI 35.27 35.27 34.52 34.52 34.54 34.54
Mean of VP — 0.21 — 0.21 — 0.21
Mean of VE — 0.36 — 0.37 — 0.37

Notes: The dependent variable is the count of inpatient hospitalizations with influenza as primary diagnosis in col-
umns 1 and 2, the count of inpatient hospitalizations with any respiratory primary diagnosis in columns 3 and 4, 
and the count of inpatient hospitalizations with osteoarthritis as primary diagnosis in columns 5 and 6, all at the 
 county-year-month level. We limit analysis to the influenza-intensive months of October through March, and our 
sample spans  2007–2017 with the exception of October 2008 to March 2009, where vaccine effectiveness data 
are not available. Vaccine protection (VP) is weighted by hospitalization shares across age groups and is mea-
sured between 0 (low) and 1 (high). The results are from a linear GMM estimation in columns 1 to 4 and from a 
Poisson GMM estimation in columns 5 and 6, all with  county-by-season-by-year fixed effects and  year-by-month 
dummies as well as weather controls. Weather controls consist of five bins of temperature quintiles, five bins of 
specific humidity quintiles, and linear terms for precipitation and wind speed. All weather variables are based on 
 county-year-month averages. The air quality index (AQI) is lagged one month, and a higher AQI means worse air 
quality. Panel B uses our instruments based on wind direction instead of the AQI to generate moment conditions, 
and  even-numbered columns additionally use our VE instrument instead of VP to form moment conditions. The 
number of included observations can vary across different outcomes due to fixed effects and varied counts in each 
 county-year-month cell. Standard errors in parentheses are clustered at the county level.
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are sufficient number of cases in those diseases.38 Compared to all other disease 
outcomes, we find that influenza hospitalizations are most affected by the AQI in 
relative terms.39 The vast majority of disease outcomes are associated with a precise 
zero effect, similar to osteoarthritis. There are some diagnoses where we find that 
AQI increases hospitalizations (Figure A.6), such as acute bronchitis, perinatal con-
ditions (often includes respiratory conditions), or diabetes (known to increase influ-
enza risk (Allard et al. 2010)). Adjusting for the family-wise error rate for multiple 
hypothesis testing renders all results insignificant, except those for our influenza 
outcome.

As an expansion to our wind instrumental variables, we explore an additional 
source of variation by using inversions in online Appendix Table A.9. In columns 
1 and 2, we use only inversions (without using instruments based on wind direc-
tion). The coefficients are similar as in our main results in Table 1, with overlap-
ping confidence intervals. We next use both the inversion and wind-based sets of 
instruments in columns 3 and 4, again with estimates close to our main results.40 
These patterns lend support to the validity of our model design and demonstrate 
that our IV estimates are not a unique feature of our measure of wind direction in 
the first stage.

Finally, Table  A.10 in online Appendix A.3 explores further robustness of 
our main Poisson  GMM-IV results to changes in control variables, calcula-
tion of AQI, or including  off-seasonal cases. In columns 1 and 2, we replace our 
 county-by-season-by-year fixed effects with coarser  county-by-influenza-season 
effects. In columns 3 and 4, we drop all weather controls. In columns 5 and 6, 
we use the full controls and additionally include lagged employment at the 
 county-year-month level to control for economic activity at our level of analysis. 
In columns 7 and 8, we do not winsorize the AQI, and in columns 9 and 10, we do 
not spatially interpolate the AQI. In columns 11 and 12, we additionally include all 
 county-year-month cells with positive influenza hospitalization cases. The estimates 
remain similar to our main estimates.

B. Medical Costs

Given the above effects, we calculate the additional hospital costs and charges 
attributable to  pollution-associated influenza to assess the costs generated by air pol-
lution and the role of vaccine protection in mitigating those costs.41 We use hospital 

38 We focus on disease groupings that have at least half as many occurrences as influenza. This implies a 
threshold mean of at least 3.02 in our outcome variable, half the mean of our influenza outcome (6.04). Including 
additional low-occurrence diseases confirms the pattern shown in the figures.

39 Note that our estimate is in relative terms due to the exponential mean function. It is possible that the estimate 
in absolute terms is higher for other diseases, such as acute bronchitis, due to higher baseline prevalence.

40 The test of overidentifying restrictions is rejected at the 5 percent level, both when using inversion instru-
ments alone and when using inversions and wind instruments jointly. The test for overidentifying restrictions is 
passed only with instruments based on wind direction alone, as in our main results. This together with the lower 
first-stage  F-stat for inversion instruments drives using solely wind direction instruments as main results.

41 We use deflated hospital charges with base year 2018 and combine them with the HCUP (2018b)–provided 
 cost-to-charge ratios to convert them into hospital costs. Hospital charges are around US$29,000 per patient per 
influenza-diagnosed inpatient hospitalization, but actual costs to hospitals are lower at around US$8,000 per patient 
(online Appendix Table A.2). Further, these estimates ignore indirect costs to patients, such as forgone earnings.
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costs as the dependent variable in Table 5, showing only results using instruments, 
with  noninstrumented results presented in online Appendix Table A.11 and results 
using hospital charges instead of costs in online Appendix Table A.12. Column 1 
in panel A indicates that a  1-unit increase in the AQI corresponds to a US$1,595 
increase in hospital costs from hospitalizations with primary-diagnosis influenza. 
This implies that a one standard deviation decrease in AQI (10.9 points) reduces 
hospitalization costs by US$328 million per influenza season across the entire 
United States. Column 2 in panel A shows the interaction effect with vaccine protec-
tion, and columns 1 and 2 in panel B use a Poisson model instead of a linear model. 
Since the effect is a relative effect in panel B, the estimates are reassuringly close 
to our estimates in columns 1 and 2 in panel B in Table 1 where we use the count of 
hospitalizations as outcome.42

We can use the results in column 2 in panel A to further illustrate our main 
results in terms of additional hospital costs. When VP is high (maximum is 0.33), an 
increase in AQI has no noticeable impact on  flu-specific hospitalization costs due to 
the protective nature of the vaccine. In contrast, when VP is low, even small changes 
in the AQI generate large increases in additional  influenza-specific hospitalization 
costs. Going from an AQI of 40 to 50 (both of which are well below US regulatory 
standards) generates roughly US$455 million in additional influenza inpatient hos-
pitalization costs at a vaccine protection of 0.086, the minimum in our sample.43 
Conversely, when air quality is high ( AQI < 20 ), a drop in VP generates little addi-
tional  pollution-driven influenza hospitalization costs (though influenza cases that 
are not pollution driven still might be greatly affected). On the other hand, when air 
quality approaches an AQI of 70 (which is still relatively clean by WHO standards), 
VP is highly impactful. In particular, a drop in vaccine protection from its median 
(0.21) to the  twenty-fifth percentile (0.16), generates around US$166 million in 
additional  pollution-driven influenza costs when AQI is at the low end of our sample 
range and around US$580 million at the high end of the pollution range.44

We also decompose the effect on total costs into two of its three components, 
the effect on length of stay in days (columns 3 and 4 of Table 5) and costs per day 
( columns 5 and 6).45 Examining these two outcomes may also help to shed some light 
on whether pollution is likely to increase the severity or spread of flu. Our results show 
a positive but statistically insignificant increase in length of stay and a statistically 
significant increase in costs per day. We interpret these results as supporting the idea 
that pollution leads to more intense cases of the flu—i.e., it increases severity. We 
note, however, that we cannot properly disentangle the spread versus severity story, 
as we only observe the joint outcome of likelihood of hospitalization and not the two 

42 Note that we have an equally high share of zeros regardless of whether we use hospital costs or count of 
hospitalizations as our outcome measure. The better fit of an exponential (Poisson) model to data with large shares 
of zeros may explain why the Poisson based estimates in panel B are slightly more precise than those based on the 
linear model in panel A.

43 Calculated as  10 ⋅  (3,117 − 0.08 ⋅ 8,794)  = US$24,135  per  county-month, multiplied by 3,142 counties 
and 6 months.

44 Calculated as  20 ⋅  (0.05 ⋅ 8,794)  = 8,794  and  70 ⋅  (0.05 ⋅ 8,794)  = 30,779 , both multiplied by 3,142 
counties and 6 months.

45 The third component is the number of hospitalizations per  county-month as in Table 4 in columns 1 and 2 in 
panel B.
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separate components (the likelihood of catching the flu or the likelihood of hospital-
ization conditional on catching the flu).46

A back-of-the-envelope calculation based on realizations within our dataset 
may help place our estimates in a more useful context. Our results suggest that 
a 10 percent (3.5 AQI points) reduction in the AQI in a historically bad vaccine 
 effectiveness year (17 percent VE and 11 percent VP) would avert 12,607 (16.6 per-
cent)  hospitalizations across the United States, or US$109 million in influenza 
medical costs.47 In contrast, a 10 percent improvement in either vaccine  take-up 
or vaccine effectiveness from average vaccine  take-up or effectiveness in a histori-
cally polluted year (38.2 AQI) would avert 26,378 (34.6 percent) of pollution-driven 
influenza hospitalizations, or US$211 million.

46 Admitting more marginally sick people, for example, could undermine this exercise.
47 We calculate averted medical costs by multiplying the number of averted hospitalizations by the average costs 

per influenza hospitalization (US$8,000).

Table 5—Total Hospitalization Costs, Length of Stay, and Costs per Day

Length of stay
Total costs in days Costs per day

(1) (2) (3) (4) (5) (6)
Panel A. Linear  GMM-IV
AQI 1,594.5 3,117.3 0.017 0.070 15.3 20.2

(504.7) (1,415.5) (0.017) (0.046) (7.34) (19.2)
AQI × VP −8,794.1 −0.27 −21.1

(7,227.4) (0.26) (110.8)

Panel B. Poisson  GMM-IV
AQI 0.024 0.097 0.0065 0.058 0.0078 0.023

(0.0086) (0.026) (0.0077) (0.021) (0.0065) (0.018)
AQI × VP −0.53 −0.32 −0.10

(0.17) (0.13) (0.11)

Observations 17,754 17,754 17,783 17,783 17,754 17,754
Mean of outcome 48,011.49 48,011.49 2.64 2.64 1,238.3 1,238.3
Mean of AQI 35.28 35.28 35.29 35.29 35.28 35.28
Mean of VP — 0.21 — 0.21 — 0.21
Mean of VE — 0.36 — 0.36 — 0.36

Notes: The dependent variable is hospital costs for inpatient hospitalizations with influenza as primary diagno-
sis, length of stay in days, or costs per day. We limit analysis to the influenza-intensive months of October through 
March, and our sample spans  2007–2017 with the exception of October 2008 to March 2009, where vaccine effec-
tiveness data are not available. Vaccine protection (VP) is weighted by hospitalization shares across age groups 
and is measured between 0 (low) and 1 (high). The results are from a linear GMM estimation in panel A and from 
a Poisson GMM estimation in panel B, all with  county-by-season-by-year fixed effects and  year-by-month dum-
mies as well as weather controls. Weather controls consist of five bins of temperature quintiles, five bins of spe-
cific humidity quintiles, and linear terms for precipitation and wind speed. All weather variables are based on 
 county-year-month averages. The air quality index (AQI) is lagged one month, and a higher AQI means worse 
air quality. All results use our instruments based on wind direction instead of the AQI to generate moment condi-
tions, and  even-numbered columns additionally use our VE instrument instead of VP to form moment conditions. 
Standard errors in parentheses are clustered at the county level.
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C. Policy Implications

Since the marginal benefit from improving either VP or air quality decreases in 
the level of the other variable, vaccine and air quality policies can serve as substitutes 
in preventing  pollution-induced influenza cases.48 The optimal mix of those policies 
will depend on their relative costs on the margin as well as the spillover impacts 
each may have on harms beyond influenza. It is also worth noting that these policies 
can operate on different time scales, adding an additional dimension to the  trade-offs 
across each policy. For example, reducing pollution emissions requires investments 
in capital equipment and takes considerable time, but informational approaches that 
promote vaccine  take-up can bear fruit much more quickly. Regardless of the specif-
ics, recognizing the interaction of these two policies broadens the toolkit to address 
the harms from either one of them and thus necessarily allows one to obtain a given 
set of policy objectives at (weakly) lower costs.

The interaction of vaccine  take-up and air quality policies also highlights new 
potential benefits from improved targeting of either policy. Given the seasonality of 
the flu, air quality policies could be  time-varying.49 Given our finding that influenza 
hospitalizations account for a significant share of all respiratory hospitalizations 
from pollution, more stringent air quality policies in influenza months may be par-
ticularly impactful.50

Programs to promote vaccine  take-up can also be targeted toward vulnerable 
communities based on  sociodemographic risk factors. Using  time-averaged data 
on vaccine  take-up by state and race, air quality by county, and  sociodemographic 
county characteristics on median household income and race from Chetty et  al. 
(2018) and the US census, we ask what an increase of 10 percent in the overall 
vaccine  take-up average (a 4.6 percentage point increase) achieves when targeted at 
different types of counties.51 Specifically, we examine differences between the top 
and bottom 1 percent of US counties in terms of racial population shares and median 
income, and we use our estimated coefficients to compare the benefits of a 4.6 per-
centage point increase in vaccine  take-up across these scenarios.52

Increasing vaccine  take-up in a county with high versus low Black popula-
tion shares reduces hospitalizations and associated costs by 40.7 percent versus 
26.8 percent. The difference is substantial, since pollution exposure is higher 
and vaccine  take-up lower in communities with higher shares of Black residents. 
Interestingly, we find little difference in results when stratifying by income. 
Targeting a high-income versus a low-income county reduces  pollution-induced 

48 In the event that air quality improvements reduce the spread of the flu, the two policies may serve as com-
plements rather than substitutes under certain conditions. For example, if the reproductive rate of flu is above 1 
even with vaccine protection but falls below 1 when combined with air quality policy, then the two policies may 
be complements.

49 We thank Douglas Almond for raising this point.
50 Seasonal air quality policies are not without precedent. For example, the NOx  cap-and-trade program in the 

United States only operates between May and September, when ozone tends to be highest (Deschenes, Greenstone, 
and Shapiro 2017).

51 We calculate the average vaccine  take-up by county using vaccine  take-up rates by race and White, Black, 
Hispanic, and Asian population shares by county. Our calculations account for the joint statistical relationships 
between  vaccine-take up, race, pollution exposure, and income.

52 We use the median county AQI and  vaccine take-up rate in the bottom and top 1 percent of counties.
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influenza hospitalizations and associated costs by 36.4 percent versus 38.0 percent. 
Correlations in our data suggest that these effects are similar due to two offsetting 
forces. High-income counties tend to include major cities, which are more polluted 
than more rural areas (increasing the benefits of  vaccine-take up) but also have 
higher baseline vaccine  take-up rates (decreasing the benefits). To some degree, 
this supports the conjecture that air quality controls and vaccine  take-up can serve 
as substitutes.

IV. Conclusion

Using a rich, longitudinal dataset, we provide evidence that air pollution increases 
seasonal influenza hospitalization rates and that improved vaccine protection, either 
through high vaccine effectiveness or vaccine  take-up, greatly diminishes this rela-
tionship and reduces the social and medical costs of poor air quality. Our empirical 
strategy, based on instrumental variables using wind direction and the stochastic 
nature of vaccine effectiveness across influenza seasons, limits risks of confound-
ing. Our results are robust to numerous assumptions about functional form, omitted 
variables, alternative outcomes, and falsification tests.

That policies to combat air quality can protect citizens from the most serious 
threats of influenza is a new insight that offers an additional tool in the global battle 
against the flu. At the same time, it appears that increased flu vaccination rates and 
improvements in flu vaccine strain matches can avert some of the harms from pol-
lution. As such, the returns to policies designed to address pollution and infection 
externalities are inextricably connected, such that approaching either in isolation 
will be  suboptimal from a social welfare perspective. Thus, optimal policy strategies 
can help decrease medical spending, avoid lost productivity, and reduce loss of life. 
These returns may be particularly high in dense urban centers around the world and 
in developing countries in particular, where population density and high levels of 
pollution (de Lataillade, Auvergne, and Delannoy 2009) increase the intensity of 
these interactions.

Our insights regarding compounding risks from pollution and flu may extend 
to other viral respiratory illnesses with similar etiological pathways. For example, 
research on the  COVID-19 pandemic suggests significant effects of pollution on 
 COVID-19 cases and deaths (Wu et al. 2020; Isphording and Pestel 2021).53 While 
vaccine developments aid against such health threats, new strains and viruses may 
emerge that diminish such protection. Our results suggest an additional possible 
 policy direction, whereby environmental controls serve as an investment to opti-
mally manage the harms from new viral threats if effective vaccines are not avail-
able while also providing additional protection against more established respiratory 
infections that may drain the health-care system during times of crises.

53 See, e.g., Cui et al. (2003) for evidence on the earlier  SARS-CoV.
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