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Clean Identification? The Effects of the Clean Air Act on 
Air Pollution, Exposure Disparities, and House Prices†

By Lutz Sager and Gregor Singer*

We assess the US Clean Air Act standards for fine particulate matter 
(PM2.5). Using high-resolution data, we find that the 2005 regula-
tion reduced PM2.5 levels by ​0.4 μg/​m​​ 3​​ over five years, with larger 
effects in more polluted areas. Standard difference-in-differences 
overstates these effects by a factor of three because time trends dif-
fer by baseline pollution, a bias we overcome with three alternative 
approaches. We show that the regulation contributed to narrowing 
Urban-Rural and Black-White PM2.5 exposure disparities, but less 
than difference-in-differences suggest. Pollution damages capitalized 
into house prices, however, appear larger than previously thought 
when leveraging regulatory variation. (JEL  D63, K32, Q52, Q53, 
Q58, R31)

The 1970 Clean Air Act (CAA) and subsequent amendments are the corner-
stone of air quality regulation in the United States. The CAA operates through 

National Ambient Air Quality Standards (NAAQS) set by the US Environmental 
Protection Agency (EPA), with measures typically targeted at regions found to be in 
nonattainment of a given NAAQS.1 The latest air pollutant to be regulated through 
NAAQS is PM2.5, fine particulate matter of diameter smaller than 2.5 micrometers, 
with regulation coming into effect in 2005. PM2.5 is one of the air pollutants most 
clearly associated with a wide range of adverse health outcomes (Landrigan et al. 
2018), productivity losses (Graff Zivin and Neidell 2012) and other nonhealth out-
comes (Aguilar-Gomez et al. 2022), and the key driver of the EPA’s Air Quality 
Index. Given the large costs associated with pollution exposure, a central question is 
how effective policies are at lowering pollution levels.

1 NAAQS are generally implemented at the state level through State Implementation Plans (SIP). States identify 
nonattainment areas that fail to meet NAAQS for criteria air pollutants, based on methodology set by the EPA. 
Nonattainment status triggers heightened scrutiny both within state level SIPs and under federal regulation. Since 
1970 the spectrum of regulatory instruments has broadened substantially to include national emissions standards for 
cars and light trucks, various technology mandates and performance standards, offset requirements, fuel standards, 
as well as market-based instruments.
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We estimate the effect of the PM2.5 NAAQS nonattainment designations in 2005 
on PM2.5 concentrations, and assess implications for racial and spatial pollution 
exposure disparities and house prices in the United States. We use high resolu-
tion data from three leading reanalysis projects (Meng et al. 2019a, Di et al. 2019, 
van Donkelaar et al. 2021a) that estimate PM2.5 concentrations by combining ground 
monitors, satellite data, and chemical transport models for the entire contiguous 
United States. We combine those with US census data and the EPA-registered PM2.5 
values (RV) that the agency constructs based on ground level pollution monitor 
readings and uses to assign nonattainment status.2 We contribute to a recent litera-
ture that uses these PM2.5 rules as a setting to study pollution damages or environ-
mental justice (Bishop, Ketcham, and Kuminoff 2023, Jha, Matthews, and Muller 
2019, Sanders, Barreca, and Neidell 2020, Currie, Voorheis, and Walker 2023), as 
well as the broader literature on NAAQS nonattainment effects with three insights.

Our first insight is that standard difference-in-differences (DiD) estimation, 
despite being popular, significantly overstates nonattainment effects. This is because 
EPA-registered PM2.5 values, and therefore also nonattainment designations, cor-
relate with secular time trends in air quality. Areas that start out with higher lev-
els of pollution also experienced larger pollution reductions over time even in the 
absence of nonattainment status. Formal placebo tests using only attainment areas 
confirm that DiD estimations pick up an effect, casting doubt on the parallel trends 
assumption required for DiD. This pattern holds when we exclude attainment coun-
ties that border nonattainment areas, or when we exclude areas that were previously 
treated as nonattainment with the earlier PM10 standard.3 We find such correlated 
time trends in all three reanalysis-derived pollution data sources as well as in the 
EPA’s monitor data, for both absolute and relative changes in PM2.5 concentrations, 
and whether or not we control for flexible state-specific time trends.

We propose three alternative strategies that address the systematic relationship 
between baseline pollution and pollution changes over time. All three produce 
similar estimates which are substantially smaller than the standard DiD estimates. 
The first approach augments DiD by controlling for trends correlated with baseline 
PM2.5 directly. We thus call it DiD with baseline (DiDwb). The second approach 
exploits the fact that we observe census block level pollution which we aggregate to 
census tracts. Nonattainment is usually assigned at the coarser level of counties and 
commuting zones. This enables us to employ a matched difference-in-differences 
(MDiD) strategy comparing tracts from nonattainment and attainment areas that 
have similar baseline pollution levels. The third approach relies on the discontinuous 
assignment rule for nonattainment areas, exploiting our collected EPA-registered 
PM2.5 values in a regression discontinuity (RD) design. While placebo tests fail for 
standard DiD, the placebo tests pass when using these other strategies. Our preferred 

2 To facilitate replication and wider use in future studies we rely exclusively on publicly available data at the 
most granular level (census blocks) to estimate the effectiveness of the policy in reducing pollution exposure, and 
note that this is equivalent to using restricted-use microdata and assigning pollution to individuals at the block level.

3 We show that the pre-trend disappears when assigning areas that have previously also been treated with the 
earlier PM10 standard into the control group as in Currie, Voorheis, and Walker (2023), which, however, requires an 
implicit assumption of no treatment effects for these units. We test this assumption and show, on the contrary, that 
areas that have previously been designated into PM10 nonattainment experienced larger marginal PM2.5 reductions 
from additional PM2.5 nonattainment designation.
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specification, MDiD, shows a 0.4 μg / m3 reduction in PM2.5 between 2001–03 and 
2006–08 due to nonattainment status, a third of the standard DiD estimate. This is 
equivalent to a 3 percent reduction from 2001–03 averages. Bootstrap simulations 
show that our alternatives are significantly different from DiD but statistically indis-
tinguishable from each other.

Our second insight is that this implies a lower contribution of NAAQS nonat-
tainment areas to narrowing structural pollution exposure disparities. We first con-
firm the Black-White pollution gap documented in Jbaily et al. (2022) and Currie, 
Voorheis, and Walker (2023), and that these gaps narrowed, in part due to NAAQS 
nonattainment areas (Currie, Voorheis, and Walker 2023). We find, however, that 
the NAAQS’ contribution is less than half the size when we use our preferred spec-
ification (MDiD) compared to standard DiD. This implies that the Clean Air Act 
may have contributed less to environmental justice than previously thought, at least 
with respect to PM2.5 pollution. We next document Urban-Rural disparities that 
are even larger than the racial gap in pollution exposure. Again, we show that the 
Urban-Rural gap has narrowed, but that the contribution of the 2005 NAAQS is 
significantly smaller than standard DiD may suggest.4

Our third insight is that pollution damages might be even larger than previously 
thought. We quantify the damages from PM2.5 exposure as capitalized in census 
tract level house prices from the Federal Housing Finance Agency (FHFA), using 
nonattainment designations as instrumental variable. We find that PM2.5 reductions 
following nonattainment designation were associated with a 6 percent house price 
increase on average. The implied elasticity with respect to PM2.5 of around −1.4 
is around twice that found for PM10 (Bento, Freedman, and Lang 2015) and up to 
four times the elasticity for Total Suspended Particles (TSP or PM100) (Chay and 
Greenstone 2005). Importantly, the simple DiD-IV suggests pollution damages that 
are substantially smaller than those of our other three alternative approaches, more 
in line with previous estimates for PM10, which may, however, contain bias. This 
implies that while simple DiD overestimates the effect of nonattainment on PM2.5, 
it underestimates the effect of PM2.5 on house prices when nonattainment status is 
used as an instrument for PM2.5. The magnitude of our adjustment is important: 
the house price elasticity changes by a larger increment (from −0.8 to −1.4) after 
adjusting for these time trends than it changes after accounting for potential endog-
eneity with instruments relative to a simple OLS regression (from −0.5 to −0.8).

Overall, our results show the importance of accounting for parallel trends vio-
lations that overstate air quality improvements from nonattainment designations in 
standard DiD frameworks. We find similar differences for all three pollution data 
sources and when looking at the longer term effects until 2011–13. We find evidence 
of effect heterogeneity, with larger improvements in the most polluted parts of non-
attainment areas in line with findings for previous NAAQS (Auffhammer, Bento, 
and Lowe 2009; Bento, Freedman, and Lang 2015; Gibson 2019). We also show 
that areas that have previously been treated with PM10 nonattainment designation 
experienced larger marginal effects from PM2.5 nonattainment. Finally, we show 

4 We also show that patterns are similar in versions where we allow for heterogeneous NAAQS nonattainment 
effects by baseline share of Black or urban population across census tracts.
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some evidence that the bias we identify is likely to extend to other NAAQS settings, 
and discuss exceptions in the previous literature that address possible confounding 
trends (e.g., Greenstone 2004; Chay and Greenstone 2005).

We contribute to the literature on environmental policy analysis generally and the 
Clean Air Act in particular. Existing literature on nonattainment designations under 
previous NAAQS include estimated reductions in Ozone (Henderson 1996), sul-
fur dioxide (​​SO​2​​​) (Greenstone 2004), TSP (Chay and Greenstone 2005), and ​​PM​10​​​ 
concentrations (Auffhammer, Bento, and Lowe 2009).5 We show that the NAAQS 
for PM2.5 implemented in 2005 were effective, albeit less so than DiD estimation 
may suggest, an insight that likely extends to other NAAQS. We illustrate the role 
of the regulation in narrowing pollution exposure disparities, a finding that is rele-
vant for the literature on structural pollution gaps and environmental justice (Currie, 
Voorheis, and Walker (2023); Jbaily et al. (2022); Banzhaf, Ma, and Timmins 2019, 
Colmer et al. 2020, Drupp et al. 2021). Finally, we contribute to a growing litera-
ture that relies on nonattainment designations as an instrument to quantify pollu-
tion damages (Chay and Greenstone 2005; Grainger 2012; Bento, Freedman, and 
Lang 2015). While we explore the effects on house prices, it appears likely that our 
adjustments to the first stage to account for correlated time trends are also relevant 
for other second stage outcomes, such as health (Isen, Rossin-Slater, and Walker 
2017, Sanders and Stoecker 2015, Sanders, Barreca, and Neidell 2020, Colmer and 
Voorheis 2021, Bishop, Ketcham, and Kuminoff 2023).

The rest of the paper begins with a description of the regulatory context and the 
data we use in Section I. We set up the empirical strategy in Section II along with 
descriptive statistics that highlight the nuances in identification requirements and 
their plausibility. Section III shows results from estimating the effects of the CAA 
2005 NAAQS rules on PM2.5 concentrations. Section IV turns to our two applica-
tions, analysing the contribution of nonattainment designations in narrowing struc-
tural pollution exposure disparities, and using nonattainment as as instrument for 
PM2.5 to estimate the pollution impact on house prices. Section  V discusses the 
relevancy of our insights for other NAAQS and Section VI concludes.

I.  Data and Regulatory Context

A. The 2005 National Ambient Air Quality Standards for PM2.5

Under the CAA, the EPA primarily regulates air quality through successive NAAQS 
aimed at specific pollutants. In April 2005, the 1997 NAAQS for PM2.5 , particulate 
matter smaller than 2.5 μm in diameter, came into effect.6 The EPA introduced 

5 Nonattainment designation has also been linked to changes in industrial activity (Henderson 1996; Greenstone 
2002), within-product improvements in emission intensity (Shapiro and Walker 2018), and employment (Kahn and 
Mansur 2013; Walker 2013). Deschênes, Greenstone, and Shapiro (2017) study a non-NAAQS but related CAA 
policy focusing on nitric oxide (​​NO​x​​​). Economists have been assessing the benefits and costs of the CAA from 
its inception, initially using prospective regulatory analyses, but increasingly using retrospective analyses with 
quasi-experimental methods, as documented in recent surveys by Aldy et al. (2022) and Currie and Walker (2019).

6 Several litigation procedures from 1999 delayed the implementation of the new regulations escalating up to 
the Supreme Court (EPA v. American Trucking Assoc., 531 US 457 2001), see US EPA (2005a, 2016). Previous 
NAAQS regulated coarser particulate matter PM10 and TSP, equivalent to PM100.
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regulation for PM2.5 through two new standards: A threshold of 15 μg / m3 for the 
three-year average of annual mean ambient PM2.5 concentrations, and a threshold of 
65 μg / m3 for the three-year average of the 98th percentile of daily (24h) PM2.5 con-
centrations. Areas that failed to meet at least one of these thresholds were designated 
as nonattainment areas. As Figure 1 shows, whenever an area satisfied the annual 
requirement, it also satisfied the daily requirement, so we focus on the binding annual 
requirement for the rest of the analysis.7 The EPA has several powers to induce air 
quality improvements in nonattainment areas, for example by reviewing or enforc-
ing air quality improvement plans8, or by withholding federal funding and denying 
permits for infrastructure projects or polluting plants. Reclassification from nonat-
tainment to attainment status is usually initiated by requests from states (Sullivan 
and Krupnick 2018). There was no reclassification to attainment until  2011, and 
no reclassification into nonattainment based on the 1997 standards (only with new 
standards, see Footnote 7).

The PM2.5 measurements for assigning nonattainment status are based on an 
incomplete network of ground monitors that the EPA deployed from 1999 to January 
2001 (US EPA 2005a). While these monitors were usually placed in more populous 
counties, they only covered around 20 percent of counties, possibly missing coun-

7 A 2006 revision of the daily requirement from 65 μg / m3 to 35 μg / m3 came into effect in December 2009, and 
designated a few additional counties as nonattainment. Our main analysis focuses on changes until December 2008 
before these additional nonattainment designations. A 2012 revision of the annual requirement from 15 μg / m3 to 
12 μg / m3 came into effect in April 2015.

8 State implementation plans typically include measures such as permits, technological standards such as emis-
sion capture, fuel efficiency improvements or retrofits, and surveillance and enforcement rules.

Figure 1. Nonattainment Status and EPA-Registered ​​PM​2.5​​​ Values

Notes: Both panels plot the EPA-registered ​​PM​2.5​​​ values of counties and nonattainment status of the NAAQS rules 
coming into effect in 2005. Panel A shows the EPA-registered ​​PM​2.5​​​ values for the three-year average of the annual 
threshold of 15 μg / ​m​​ 3​ from 2001 to 2003. Panel B shows the EPA-registered ​​PM​2.5​​​ values for the three-year aver-
age of the ninety-eighth percentile daily threshold of 65 ​μg / ​m​​ 3​​ from 2001 to 2003. The county markers are jittered 
for visualization. The plots show that the annual threshold in panel A is binding, in the sense that there is no county 
that meets this requirement, but does not meet the daily requirement in panel B. On the other hand, many counties 
meet the daily threshold in panel B but are still assigned into nonattainment because they don’t meet the annual 
threshold in panel A. County level RV reflect the RV of the nonattainment area (i.e., are assigned the highest RV 
within a nonattainment area).
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ties that would otherwise be regulated (Sullivan and Krupnick 2018, Fowlie, Rubin, 
and Walker 2019).9 The EPA took the three year averages of monitor readings from  
2001 to 2003 to calculate the EPA-registered PM2.5 values for each area to compare 
against the regulatory threshold. Since the 1997 NAAQS designations only took 
effect in April 2005, states were allowed to provide the EPA with updated 2002–2004 
measurements, which led to a few counties being reclassified from nonattainment to 
attainment before 2005. We collect the latest RVs that incorporate these updates.10

Most nonattainment areas coincide with county groupings that make up 
Metropolitan Statistical Areas (MSA) or commuting zones (CZ), but are refined by 
the EPA on a case-by-case basis using nine decision factors to define air regions.11 
Therefore, the boundaries of nonattainment areas usually extend beyond single 
counties, motivated by the fact that air pollution can spill over into neighbouring 
counties. This means that if a county contains a monitor with a RV in excess of 
one of the PM2.5 NAAQS thresholds, the entire air region (usually an MSA) is in 
nonattainment, including other counties in the area that may have low pollution 
readings or no monitor at all. In this case, the entire group of counties within a 
nonattainment area is assigned the RV of the county with the highest RV.12 In total, 
the EPA assigned 208 counties into nonattainment in 2005, all violating the annual 
threshold (and a subset also violating the daily threshold). Figure 2, panel A maps 
the 208 nonattainment counties based on the EPA air regions.

We use data from the EPA Green Book and Federal Register to identify the non-
attainment counties (US EPA 2005a, b, 2021). We obtain the RVs for the annual and 
daily standards for all counties that are used by the EPA to determine attainment 
status (US EPA 2018b, a), and importantly, also including those counties that had 
a RV but were not assigned into nonattainment. Counties without monitors that are 
not part of any nonattainment area have no RV. Since every nonattainment area has 
the RV of the county with the highest RV within its area, we assign those RVs to 
each nonattainment area using data and detailed discussions from US EPA (2004b, 
2005c, 2021), and update them with the supplementary amendments contained in 
US EPA (2005b, c). We next match areas to more recent, granular measures of par-
ticulate matter concentrations.

B. Pollution Data

We use annual estimates of ground level PM2.5 concentrations from three sources. 
All three are based on satellite data combined with chemical transport models and 
calibrated to fit ground level monitor readings. Our main results use pollution data 

9 Therefore EPA technical documents often refer to attainment areas as unclassifiable/attainment. Our simple 
difference-in-differences estimates using satellite-based pollution measures are virtually identical for the whole 
sample of all counties or the smaller sample of counties with RVs (and monitors).

10 In the technical EPA documentation, these EPA-registered PM2.5 values are referred to as ‘Design Values.’
11 The nine factors that define the appropriate boundaries of areas are emissions, air quality, population density, 

commuting patterns, expected growth, meteorology, geography, jurisdictional boundaries, and control of emission 
sources. See US EPA (2004a) for a detailed explanation.

12 The EPA only groups counties together with the highest RV in nonattainment areas, not attainment areas. In 
some counties, there are multiple monitors allowing for spatial averaging, and some exceptionally large counties 
might only be partially included in an area.
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from Meng et al. (2019b), but we show in the Appendix that all our results are simi-
lar when using two alternative datasets from Di et al. (2021) or van Donkelaar et al. 
(2021b).13

All three datasets provide PM2.5 concentrations at a spatial resolution of  
​​0.01​​ ◦​​ ​×​ ​​0.01​​ ◦​​(approximately 1 km ​×​ 1 km cells in the United States, depending on 

13 The data by Meng et al. (2019b) extend the furthest back in time. For the van Donkelaar et al. (2021b) data, 
we use the latest recommended version (V5.GL.03).

Figure 2. Baseline ​​PM​2.5​​​ (2001–2003) and Nonattainment Counties

Notes: The figures show average baseline ​​PM​2.5​​​ (2001–2003) at the tract level using data from Meng et al. (2019b), 
and nonattainment counties. Panel A shows the entire contiguous United States, and panel B zooms into the area 
around Indianapolis (North), Evansville (Southwest), Louisville (South) and Cincinnati (Northeast).
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latitude). The universal spatial coverage and high resolution of these products allow 
us to assign pollution levels to all census blocks in the contiguous United States on 
an annual basis starting from 2000 based on each of the three datasets, and from 
1989 for the data based on Meng et al. (2019b).14 This allows us to calculate PM2.5 
concentrations also for those counties that do not have RVs Since these data use pre-
dicted values there is uncertainty in some of the estimates, especially for those areas 
that are further away from ground-based monitors. We test robustness to uncertainty 
in Section IIIC by leveraging information on uncertainty in the underlying predic-
tions and by replicating our analysis using only pollution monitor data from US EPA 
(2022a).

C. Census Data and Mapping PM2.5 Concentrations

We use population counts from the 2000, 2010, and 2020 US census and area 
boundaries from the 2010 US census (Manson et al. 2022). The boundaries allow us 
to map geocoded PM2.5 data into the around 11 million census blocks (sub-divisions 
of tracts). Since blocks are very small and often do not contain PM2.5 grid points 
at the 1 km resolution, each block is assigned the PM2.5 concentration of the grid 
point closest to the block centroid.15 We use block level population data as weights 
to aggregate pollution up to census tracts (of which there are around 70,000). We 
also use the population data to weight tract level regressions by population and to 
calculate PM2.5 exposure differences between population groups when we turn to 
the analysis of exposure disparities.

The resulting data provides detailed measures of average PM2.5 exposure in each 
tract and each year. The map in Figure 2, panel A shows tract level PM2.5 concen-
trations averaged between 2001 and 2003 across the contiguous United States. We 
use this detailed data structure to exploit variation not comprehensively captured by 
monitoring data, specifically to investigate heterogeneity within counties, visible in 
Figure 2, panel B, and to measure changes in air quality even in those tracts that are 
not close to a ground level pollution monitor.

D. House Price Data

We demonstrate the implications of our estimates for the implied damages from 
PM2.5 exposure capitalized in house prices. Our measure of changes in house prices 
relies on data provided by the Federal Housing Finance Agency (US FHFA 2021), 
specifically, the annual house price index (HPI) at the tract level (further described 
in Bogin, Doerner, and Larson 2019).

14 Meng et al. (2019b) add monitor readings of PM10 concentrations to help model PM2.5 concentrations before 
1999.

15 Note that assigning pollution to census blocks (and their population counts) is equivalent to using restricted 
individual level data and assigning pollution to individuals based on their census block, as e.g., in Currie, Voorheis, 
and Walker (2023) (see also Supplemental Appendix A.13A). We complement the census data with information on 
commuting zones and tract-level characteristics from ChettyDATA (Chetty and Friedman 2019).
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E. Period Choice

The process of nonattainment designation occurred in multiple stages—with 
initial state level suggestions for nonattainment designation in February 2004, and 
final EPA designations in April 2005. There may already have been anticipatory 
effects of nonattainment designation before 2005 (as shown in Bishop, Ketcham, 
and Kuminoff 2023, who consider 2004 as the start of the posttreatment period). 
To avoid any bias from anticipatory effects in 2004, we define our pretreatment 
period as the three-year average between 2001 and 2003.16 Taking three-year aver-
ages helps to lower the risk of misattributing short-term fluctuations in air quality or 
measurement error to the CAA rules. To allow for time-varying effects, we report 
results for two posttreatment periods, respectively, five years (2006–08 average) and 
ten years (2011–13 average) after the pretreatment period. Supplemental Appendix 
Table A.1 provides summary statistics for the final analysis sample.17

II.  Empirical Strategy: The Effect of CAA Nonattainment Designation

Our goal is to estimate the treatment effect of nonattainment designation in 2005 
on PM2.5 concentrations. To conceptualize our approach, consider the following 
expression for the level of PM2.5 in census tract ​i​ during period ​t​:

(1)	 ​​PM​i,t​​  =  β​ NA​i,t​​ + ​δ​i​​ + ​λ​t​​ + ​ξ​i,t​​​,

where ​​NA​i,t​​​ denotes nonattainment status of tract ​i​ in period ​t​ and ​β​ is our treatment 
effect of interest. Tract level fixed effects ​​δ​i​​​ capture factors that affect PM2.5 and 
possibly nonattainment status, but do not vary meaningfully over the relevant time 
horizon—historical pollution, population density, road infrastructure, topology and 
the like. Period fixed effects ​​λ​t​​​ capture aggregate trends that affect all tracts, such 
as changes in technologies or federal regulation and policies. Finally, the error term ​​
ξ​i,t​​​ captures tract-period specific fluctuations. For now, we assume that the treatment 
effect is constant across tracts, an assumption we will relax later.18

A. Likely Bias of Simple Difference-in-Differences (DiD)

Our baseline empirical strategy is a standard DiD approach which compares 
changes in PM2.5 from the pretreatment to the posttreatment period between treated 

16 Note that we provide some descriptive statistics using Meng et al. (2019b) data going back to 1989, but since 
data before 1999 is less accurate due to the lack of PM2.5 ground monitors, we exclude these earlier periods for our 
empirical analysis.

17 While our data extends forward to 2016 (in the case of Meng et al. 2019b, Di et al. 2021) and 2020 (in the case 
of van Donkelaar et al. 2021b), respectively, we avoid measuring effects too long after nonattainment designation in 
2005 to avoid using areas that change treatment status. Some nonattainment areas came into attainment, particularly 
in 2013 and 2014. Furthermore, updates to the threshold rules came into effect in December 2009 and April 2015 
placing additional areas into nonattainment.

18 Following the literature on NAAQS nonattainment designations, we make the stable unit treatment value 
assumption (SUTVA) that rules out spillover effects from nonattainment into attainment counties (see Hollingsworth 
et al. (2022) or Walker (2013) for more discussion). We address this issue in a robustness check by excluding coun-
ties in attainment that share a border with a nonattainment county in Supplemental Appendix Table A.6.
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and untreated units. We can express this taking first differences of equation (1).19 
Simplifying and rearranging terms yields our baseline regression equation using the 
change in PM2.5 for tract ​i​ between the pretreatment and the posttreatment periods 
as outcome:

(2)	 ​Δ​PM​i​​  =  α + βΔ​NA​i​​ + Δ​ξ​i​​​,

where ​Δ​NA​i​​​ is an indicator variable that takes value one for all tracts that become 
subject to regulatory treatment from 2005 onward.20 The identifying assumption is 
that parallel trends between treated and untreated tracts hold: absent regulation, non-
attainment and attainment areas would have experienced the same average change in 
PM2.5. In other words, ​β​ yields a consistent estimate of the average treatment effect 
if ​cov​[Δ​NA​i​​, Δ ​ξ​i​​]​  =  0​.

While the parallel trends assumption cannot be directly tested, it is common 
practice to look at pretreatment trends to assess whether the assumption is plau-
sible. Panel A of Figure 3 plots average PM2.5 concentrations over time for four 
groups binned according to their EPA-registered PM2.5 values, including two non-
attainment groups (​15  <  RV  ≤  20​ and ​RV  >  20​) and two groups in attainment 
(​10  <  RV  ≤  15​ and ​RV  <  10​). Nonattainment and attainment areas appear to 
follow somewhat different trends both before and after 2005.21 Panel B shows these 
higher pollution improvements in nonattainment areas before 2005 more explicitly 
in an event study version of equation (1), plotting the annual difference in PM2.5 lev-
els between nonattainment and attainment areas relative to the difference in 2005. 
This suggests that the parallel trends assumption is violated, as it shows signifi-
cant differences in pre-trends that are similar to those after treatment. Supplemental 
Appendix Figures A.21 and A.22 confirm statistically significant pre-trend differ-
ences in the two alternative pollution data sources based on Di et al. (2021) and van 
Donkelaar et al. (2021b).

We conduct several robustness tests for these statistically significant pre-trends. 
Supplemental Appendix Figure  A.1 shows the pre-trends exist when (i) using 
2000 census borders and population instead of the 2010 versions and repeating the 
analysis at the census block level directly without aggregating to tracts, (ii) using 
interpolated population weights from the 2000, 2010, and 2020 census, allowing 
for population changes at the census block level, (iii) assigning entire commuting 
zones into nonattainment beyond the EPA-defined air regions for commuting zones 
that contain at least one nonattainment area, and when (iv) dropping all attainment 
counties that border a nonattainment area to address potential spillover effects. We 

19 That is ​Δ​PM​i​​  =  ​PM​i,post​​ − ​PM​i,pre​​  =  β​(​NA​i,post​​ − ​NA​i,pre​​)​ + ​(​δ​i​​ − ​δ​i​​)​ + ​(​λ​post​​ − ​λ​pre​​)​ + ​(​ξ​i,post​​ − ​ξ​i,pre​​)​​. 
All our specifications in changes could equivalently be modeled as panel regressions of levels with two-way fixed 
effects (TWFE) and various interaction terms. We show that such an approach in a tract-year panel from 2000–2015 
produces very similar estimates in Supplemental Appendix Table A.10, which shows a panel equivalent to Table 1.

20 We weight all regressions by tract population. Because attainment is assigned to counties spanning multiple 
tracts, we cluster standard errors at the county level, allowing for arbitrary correlation in the errors within counties.

21 Note that areas with the highest EPA-registered PM2.5 values ​​(RV  >  20)​​ experience an increase in PM2.5 
concentrations before policy implementation in 2005. One possibility are anticipatory effects in nonattainment 
areas (Clay et al. 2021). Regardless of the underlying reason, our alternative strategies limit the risk of such con-
founding trends.
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compare our event study to the event study in Currie, Voorheis, and Walker (2023) 
along with other differences in detail in Supplemental Appendix A.13.22 Their event 
study does not exhibit pre-trends as they assign the subset of nonattainment areas 
that have previously been treated with 1990 PM10 nonattainment into the control 
group. Intuitively, this subset tends to have higher pollution levels and pre-trends 
therefore evening out pre-trend differences between treated and controls, but assign-
ing these areas into the control group implicitly assumes no PM2.5 treatment effect 

22 We thank the authors of Currie, Voorheis, and Walker (2023), particularly Reed Walker, for a helpful discus-
sion of this comparison.

Figure 3. Trends in ​​PM​2.5​​​ and Event Study Analysis

Notes: Panel A shows the change in ​​PM​2.5​​​ averages at the tract level (population-weighted) over time. Each line 
represents a different bin of EPA-registered ​​PM​2.5​​​ values assigned to each attainment/nonattainment area, each of 
which usually comprises multiple counties and tracts. Panel B shows coefficient estimates from a regression that 
includes a treatment dummy interacted with years, controlling for year fixed effects. The dotted blue line shows 
point estimates and the dashed red lines show 95 percent confidence intervals based on standard errors that are 
cluster-robust at the level of counties. Both panels are based on data from Meng et al. (2019b).
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for these areas.23 We formally test treatment effect heterogeneity by previous 1990 
PM10 nonattainment status in Section IIF and IIIE, and show evidence that these 
areas actually tend to exhibit larger PM2.5 treatment effects.

The issue becomes even clearer when looking at Figure  4, which plots 
EPA-registered PM2.5 values on the horizontal and tract level negative ΔPM from 
2001–03 to 2006–08, i.e., pollution improvements, on the vertical axis. Nonattainment 
areas are those with a RV higher than the threshold value 15.24 Crucially, we see a 
positive association between RV and − ΔPM on both sides of that cutoff, indicated by 
the solid linear regression lines. This suggests that nonattainment areas would likely 
have experienced a larger reduction in PM2.5 concentrations also in the absence of 
nonattainment designation, much like attainment tracts with higher RV have experi-
enced larger reductions than other attainment tracts with lower RV. Since nonattain-
ment designation is a function of RV (​cov​[Δ​NA​i​​, R​V​i​​]​  >  0​) and Figure 4 suggests 
that RV and ​Δ​ξ​i​​​ are correlated (​cov​[− Δ​ξ​i​​, R​V​i​​]​  >  0​), it appears highly likely  
that the identifying assumption for DiD is not satisfied (​cov​[Δ​NA​i​​, Δ​ ξ​i​​]​  ≠  0​).25 
Both ΔPM and nonattainment status are correlated with pretreatment pollution lev-
els, confounding the standard DiD estimate.

23 When dropping this subset of areas instead, the significant pre-trend reappears as shown in Supplemental 
Appendix Figure A.19––see also Supplemental Appendix Table A.7.

24 The census tracts at the right end of the figure belong to Los Angeles area, the nonattainment area with the 
highest RV.

25 The simple DiD approach in (2) measures the average difference between tracts left and right of the ​RV  =  15​ 
cutoff. That is the difference between the horizontal dashed lines.

Figure 4. Improvement in Tract ​​PM​2.5​​​ Averages and EPA-Registered ​​PM​2.5​​​ Values

Notes: The figure shows the improvement in ​​PM​2.5​​​ averages at the tract level between two periods: 2001–2003 and 
2006–2008. The size of the markers reflect tract level populations. The ​​PM​2.5​​​ improvements are plotted against the 
EPA-registered ​​PM​2.5​​​ values of each attainment/nonattainment area, each of which usually comprises multiple 
counties and tracts. The dashed line plots the average ​​PM​2.5​​​ improvement for tracts in nonattainment and attainment 
areas separately, weighted by tract population, equivalent to the standard DiD estimate. The solid lines plot the lin-
ear projection of tract level ​​PM​2.5​​​ improvements on the RV of the nonattainment and attainment areas separately, 
weighted by tract population. Based on data from Meng et al. (2019b).
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Supplemental Appendix Figures A.23 and A.24 show almost identical patterns 
using the two alternative pollution data sources from Di et  al. (2021) and van 
Donkelaar et al. (2021b). In Supplemental Appendix Figure A.4, we use EPA mon-
itor level data instead and show that the pattern is similar at the monitor level.26 
Supplemental Appendix Figure A.2 shows a similar pattern when taking a 10 year 
difference from 2001–03 to 2011–13.

One reason for the different trends might be that areas that are in nonattainment 
of PM2.5 standards in 2005 are also more likely to have been in nonattainment of 
previous standards, such as those for PM10, which would explain why they are clean-
ing up their air already before 2005. We show in the Supplemental Appendix that 
different trends persist, however, even when dropping all counties that were previ-
ously in nonattainment of the PM10 standard (Supplemental Appendix Figure A.19 
and Supplemental Appendix Table A.7). Another reason for the different absolute 
trends could be similar relative improvements, for example due to technological 
change, that translate into bigger absolute improvements in more polluted areas.27 
Supplemental Appendix Figure A.3 shows this is not enough to explain differences 
in absolute terms, as more polluted areas also experienced greater relative improve-
ments in air quality over time, independent of attainment status.28 Other reasons for 
the different trends could be linked to state level policies (and therefore different 
trends by state), or reasons related to population density (with urban, suburban, and 
rural areas experiencing different trends). In Supplemental Appendix Tables  A.8 
and  A.9, we provide robustness checks including state level trends or trends by 
population density, which help explain some of the difference in trends, but not all.

While we can remain agnostic about the particular combination of reasons for 
these correlated time trends, we need to address the bias they introduce in a standard 
DiD setting, for which we employ three different strategies. The first is to include 
baseline pollution controls (DiDwb). This maintains the sample, but introduces a 
control variable. The other two approaches restrict the sample to observations for 
which parallel trends are more likely to hold. The second approach is a matching 
DiD hybrid (MDiD) and the third is a regression discontinuity design (RD).

B. Difference-in-Differences Estimation With Baseline Controls (DiDwb)

Our first strategy is to explicitly control for the confounding factor suggested by 
the relationship in Figure 4 using an augmented version of equation (2). In particu-
lar, we assume that the error can be decomposed into

	​ Δ​ξ​i​​  =  γ​ PM​i,pre​​ + Δ​ϵ​i​​​

26 We calculate three year averages for each monitor averaging over various series that are, e.g., certified or not 
certified.

27 Consider the example of road traffic. If all regions maintain the same volume of traffic, but newer cars gener-
ate 10 percent less emissions per mile driven, we would expect 10 percent less traffic related pollution in all areas, 
which would be a larger absolute improvement in high-traffic areas.

28 Colmer et al. (2020) analyse a much longer time period from 1981 to 2016 and find that absolute improve-
ments in PM2.5 pollution are much larger for the most polluted census tracts, while they find less difference in 
relative improvements. Our reported patterns are consistent with their observed reversion to the mean.
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so that we can linearly control for baseline pollution (​​PM​i,pre​​​), assuming a residual 
error ​Δ ​ϵ​i​​​:

(3)	 ​Δ​PM​i​​  =  α + β​ NA​i​​ + γ​ PM​i,pre​​ + Δ​ϵ​i​​​.

We refer to this DiD approach with baseline controls as DiDwb. Note that includ-
ing ​​PM​i,pre​​​ as control in our specification in differences is equivalent to controlling 
for ​​PM​i,pre​​​ separately by period (​​λ​t​​​) in the levels specification in equation (1), where ​​
PM​i,pre​​​ is absorbed by tract fixed effects.29 This approach absorbs any improve-
ments in air quality over time that are proportional to baseline PM2.5 levels (e.g., ​
γ  =  − 0.1​ would indicate a 10 percent reduction for all tracts).

The identifying assumption becomes an augmented version of the parallel trends 
assumption. Nonattainment and attainment areas would have experienced the same 
average change in PM2.5 over time absent regulation, conditional on a linear asso-
ciation between between baseline PM2.5 and ΔPM. Put differently, we require that ​ 
cov​[Δ​NA​i​​ , Δ​ϵ​i​​ | ​PM​i,pre​​]​  =  0​. Supplemental Appendix Figure A.7 shows insignifi-
cant pre-trend differences with this augmentation. Notably, this assumes that resid-
ual pollution shocks persist across periods. That is, we assume that ​​ϵ​it​​​ follows an 
AR1 process such as ​​ϵ​it​​  = ​ ϵ​it−1​​ + ​μ​it​​​ where ​​μ​it​​​ is uncorrelated with ​​PM​it−1​​​.

30 This 
is satisfied if a shock in the pretreatment period—from, say, new industrial units 
or infrastructure projects—persists through the posttreatment period (when a new 
shock can arrive). On the other hand, if a shock in the pretreatment period is only 
transitory—from, say, unusual weather conditions in a given year—​Δ​ϵ​i​​​ would be 
correlated with ​​PM​i,pre​​​, introducing bias into equation  (3). To mitigate such bias 
from transitory shocks, we use three-year averages of PM2.5 in both the pre- and 
posttreatment periods such that transitory shocks like weather are unlikely to be cap-
tured. We also demonstrate in Supplemental Appendix Table A.3 that results remain 
unchanged when using higher-order interactions with baseline PM2.5 allowing for 
more flexible nonlinearities.

C. Matched Difference-in-Differences (MDiD)

Our second approach exploits the fact that our analysis is at the tract level while 
nonattainment is assigned at the level of the county and/or commuting zone. This 
means that, even though the RV distributions of nonattainment and attainment areas 
are disjoint (separated at RV  =  15), there is overlap for tract level PM2.5, allowing 
us to match nonattainment tracts to attainment tracts with similar baseline PM2.5 . 
The map in Figure 2, panel B illustrates this for the region around Indianapolis, 
showing that there are tracts with low and high baseline PM2.5 in both nonattainment 
and attainment areas. Figure 5 shows the overlap in the distributions of baseline 

29 That is ​​PM​​2.5​i,t​​​​  =  β ​NA​it​​ + γ ​λ​t​​ ​PM​i,pre​​ + ​δ​i​​ + ​λ​t​​ + ​ϵ​i,t​​​ in levels is ​Δ​PM​i​​  =  α + β ​NA​i​​ + γ ​PM​i,pre​​ + Δ​ϵ​i​​​ in 
differences.

30 In our case the process is a random walk, but using earlier periods than the pretreatment period could corre-
spond to different AR processes.
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PM2.5 (2001–2003), plotting − ΔPM against ​​PM​i,pre​​​.
31 The density plots in Figure 5 

show that there are tracts in attainment areas with average PM2.5 values above the 
EPA threshold of 15, likely because the EPA air pollution ground monitor network 
has incomplete coverage (Sullivan and Krupnick 2018). There are also many tracts 
in nonattainment areas with baseline PM2.5 values below the cutoff.

We use a one to one matching based on propensity scores with replacement to 
calculate weights ​​W​i​​​ for control tracts.32 In our main version, we estimate tract 
propensity scores for treatment based on pretreatment pollution ​​PM​i,pre​​​ alone, 
which we call M1DiD. In a second version, which we call M2DiD, we addition-
ally match on pretreatment tract population and population density (both based on 
the 2000 census). For both M1DiD and M2DiD, we impose a common support 

31 Supplemental Appendix Figures A.25 and A.26 show the same pattern for our two alternative sources of 
pollution data.

32 Matching has been used in the literature to evaluate other CAA rules. Usually this is done at the county level 
instead of the tract level as we do here. In an early example, Greenstone (2004) estimates the effect of the NAAQS 
for ​​SO​2​​​ between 1975 and 1992. He uses propensity scores to match counties based on lagged pollution levels, 
income, population, and attainment status for other pollutants. This is similar in spirit to Chay and Greenstone 
(2005), who compare TSP nonattainment counties of the 24 hour standard to a control group that is in attainment 
of the 24 hour standard, limited to cases where both groups have similar annual TSP concentrations (and nonat-
tainment is triggered by a daily threshold). We mirror their approach more closely in column 7 of Supplemental 
Appendix Table A.2 where we only look at a subset of areas that are all in attainment of the 24 hour RV threshold 
in 2005, but some are in nonattainment of the annual threshold (see Figure 1). The results indicate that such an 
approach reduces some of the observed bias in DiD, but not all. Another early application is by List et al. (2003) 
who estimate the effect of Ozone nonattainment status on manufacturing plant births between 1980 and 1990. 
Sanders, Barreca, and Neidell (2020) match on baseline population and mortality to control for trends in mortality.

Figure 5. Improvement in Tract PM2.5 Averages and Baseline PM2.5 Levels

Notes: The markers in the figure show the improvement in PM2.5 averages at the tract level between two periods: 
2001–2003 and 2006–2008. The PM2.5 improvements are plotted against the baseline PM2.5 levels of each tract, 
using two different colors for tracts in nonattainment and attainment areas. The kernel density (right axis) shows 
the overlap between the baseline PM2.5 distributions of nonattainment and attainment tracts, weighted by tract pop-
ulation. The figure is based on data from Meng et al. (2019b).
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condition by dropping all nonattainment tracts with a propensity score that is higher 
than the maximum in the control group. For M1DiD this corresponds to dropping 
the rightmost tracts in Figure 5.33 Tracts that act as matched control for multiple 
treated tracts get an accordingly higher weight. Unlike the raw sample, the resulting 
matched sample is balanced between nonattainment and attainment tracts as shown 
in Supplemental Appendix Table A.4. We use these matching weights to weight our 
DiD regression,34 equivalent to

(4)	 ​Δ​PM​i​​ ​√ 
_

 ​W​i​​ ​  =  α ​√ 
_

 ​W​i​​ ​ + βΔ​NA​i​​ ​√ 
_

 ​W​i​​ ​ + Δ​ξ​i​​ ​√ 
_

 ​W​i​​ ​​.

Our identifying assumption now becomes that nonattainment and 
their propensity-matched attainment areas would have experienced 
the same average change in PM2.5 over time absent the regulation, i.e.,  
​cov​[Δ​NA​i​​ ​√ 

_
 ​W​i​​ ​, Δ​ξ​i​​ ​√ 

_
 ​W​i​​ ​ ]​  =  0​. Intuitively, this assumption addresses the issue 

visible in Figures 4 and 5 as it places lower weight on control tracts further to the 
left that have low baseline pollution and are thus less likely to be matched. The 
correlation coefficient between ​Δ​NA​i​​​ and ​​PM​i,pre​​​ is 0.64, but only −0.08 between  
​Δ​NA​i​​ ​√ 

_
 ​W​i​​ ​​ and ​​PM​i,pre​​ ​√ 

_
 ​W​i​​ ​​. We show that the event study graph in Supplemental 

Appendix Figure A.8 no longer shows significant differences in pre-trends when 
using the matched sample.

One concern with this approach may be that bias from SUTVA violations due 
to spillovers could be exacerbated relative to standard DiD, if matched control 
units tend to be geographically closer to treated units absorbing more spillovers. To 
address this issue, we exclude all counties in attainment that share a border with a 
nonattainment county and show that the pattern of our baseline results are robust in 
Supplemental Appendix Figure A.6 and Supplemental Appendix Table A.6.

D. Regression Discontinuity Design (RD)

Our third approach exploits the discontinuous assignment rule used for nonat-
tainment designations based on the EPA-registered PM2.5 threshold (​RV  =  15​). We 
implement a regression discontinuity (RD) design where we compare nonattain-
ment tracts with a value just above the threshold to attainment tracts just below the 
threshold.35 We determine the window of EPA-registered PM2.5 values around 15 
by using the optimal bandwidth selection procedure for local polynomial regres-
sion discontinuity estimation following Calonico, Cattaneo, and Titiunik (2014) and 
Calonico, Cattaneo, and Farrell (2020).36

33 This effectively limits treated units to those with a baseline PM2.5 level of up 18.3. Note that this still includes 
a subset of tracts in counties with the highest RVs (Los Angeles area) on the right in Figure 4.

34 Since we weight all regressions by tract population, we take the product of matching weights and population 
weights for our MDiD approaches.

35 In an early example, Chay and Greenstone (2005) exploit the discontinuous nature of the 1971 NAAQS for 
TSP. Specifically, they restrict their DiD sample to a narrow window around the TSP cutoff value, akin to our RD0 
approach. See also Sanders and Stoecker (2015).

36 This is akin to using binary weights in equation (4), set to 1 for treated and untreated observations close to 
the cutoff.
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We estimate two versions of the model based on the restricted sample. One ver-
sion simply estimates the DiD design around the regression discontinuity, which we 
call RD0 (since it allows for a polynomial of degree 0). The other version allows 
for a linear relationship between our outcome ​Δ​PM​i​​​ and RV, even in the small 
window around the threshold, which we call RD1 (since it allows for a polynomial 
of degree 1). To implement RD1, the RV (recentered around 15) enter as a control 
variable37

(5)	 ​Δ​PM​i​​  =  α + βΔ​NA​i​​ + λ​RV​i​​ + Δ​ξ​i​​​.

The identifying assumption of the regression discontinuity approach is that the 
potential outcomes in ​Δ​PM​i​​​ are continuous around the threshold. This assumption 
includes the usual requirement that there are no discontinuous jumps in factors 
associated with ΔPM at ​RV  =  15​, and that there is no manipulation around the 
threshold that may correlate with ΔPM. In Supplemental Appendix Figure A.11 we 
illustrate that there does not appear to be a discontinuous jump in tract population 
and population densities around the treatment cutoff. In Supplemental Appendix 
Figure A.12 we show density plots for RV, which do not show evidence of manipu-
lation around the treatment cutoff within the optimally chosen bandwidths, and pass 
the formal sorting around the threshold test (Cattaneo, Frandsen, and Titiunik 2015, 
McCrary 2008). Figure A.9 shows insignificant pre-trends with our RD design.

We argue that the DiDwb, MDiD and RD approaches address the bias in the sim-
ple DiD that stems from correlation of both outcome and treatment with baseline 
pollution as shown in Figure 4 that violates the parallel trends assumption underly-
ing DiD. However, they differ with respect to the estimand: While the DiD, DiDwb, 
and MDiD approaches, correctly identified, estimate the average treatment effect 
on the treated (ATT), the RD approach estimates the local average treatment effect 
(LATE) of nonattainment designation around the ​RV  =  15​ annual threshold.

E. Heterogeneous Treatment Effects by Baseline Pollution Levels

We have so far assumed that the treatment effect ​β​ is homogeneous across all 
tracts. Heterogeneous treatment effects ​​β​i​​​ are potentially important because even if 
we fail to detect average treatment effects, the policy may be effective in a subset of 
tracts in nonattainment areas, possibly the most polluted ones. Auffhammer, Bento, 
and Lowe (2009), for example, find no statistically significant effect of nonattain-
ment designation under the 1990 CAA amendments for PM10 at the county level, 
but find significant reductions in PM10 for individual monitors that are in nonattain-
ment. Similarly, Bento, Freedman, and Lang (2015) and Gibson (2019) find larger 
improvements of air quality near binding pollution monitors that are responsible for 
assignment into nonattainment of an area compared to less binding monitors in the 
same areas.

37 For the empirical implementation, we also interact the values with nonattainment status to allow for different 
slopes on either side of the cutoff.
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To account for potential heterogeneity in treatment effects, we repeat the stan-
dard DiD and all three of our approaches with an added interaction term between 
nonattainment status and baseline levels of PM2.5 in 2001–2003. The standard DiD 
equation (2) becomes

(6)	 ​Δ​PM​i​​  =  α + ​β​1​​ Δ​NA​i​​ + ​β​2​​ Δ​NA​i​​ ​PM​i,pre​​ + Δ​ξ​i​​​.

Treatment ​​β​i​​​ therefore varies along the dimension of pretreatment pollution, or ​​
β​i​​  = ​ β​1​​ + ​β​2​​ ​PM​i,pre​​​.

38

F. Heterogeneous Treatment Effects by Previous ​​PM​10​​​ Nonattainment Status

Of the 208  nonattainment counties, 71  counties were in nonattainment of the 
1990 NAAQS for PM10 in the years leading up to 2005. Since PM2.5 and ​​PM​10​​​ are 
highly correlated, and indeed often emitted by the same sources, on-going regula-
tion of PM10 emissions may well alter the impact of additional PM2.5 regulation. 
Supplemental Appendix Figure A.14 repeats our Figure 4 but shows four groups 
based on both PM2.5 nonattainment and PM10 nonattainment. We address previous 
nonattainment in two ways. Our first approach is to show robustness of our results 
to dropping all areas in PM10 nonattainment (Supplemental Appendix Table A.7). 
Our second approach is to explicitly allow heterogeneous treatment effects of PM2.5 
nonattainment based on previous PM10 nonattainment. Specifically, we estimate a 
naive DiD regression (as well as our other models) that allows for such heteroge-
neous effects:

(7)	 ​Δ​PM​i​​  =  α + ​β​1​​ Δ​NA​​2005​i​​​​​(1 − ​NA​​1990​i​​​​)​ + ​β​2​​ Δ​NA​​2005​i​​​​ ​NA​​1990​i​​​​ 

	 + ​β​3​​ ​NA​​1990​i​​​​ + Δ​ξ​i​​​.

The coefficients ​​β​1​​​ and ​​β​2​​​ capture the PM2.5 nonattainment effects for areas with-
out (​​β​1​​​) and with previous (​​β​2​​​) PM10 nonattainment status, respectively. Note that 
we control for differential trends based on PM10 nonattainment status separately 
(captured by ​​β​3​​​), so ​​β​1​​​ and ​​β​2​​​ represent the marginal effect of PM2.5 nonattain-
ment for the two groups, respectively. In principle, ​​β​2​​​ could be smaller than ​​β​1​​​, e.g., 
because switching from no treatment into treatment has the most impact, but ​​β​2​​​ 
could also be larger than ​​β​1​​​, e.g., if being in nonattainment with both NAAQS has 
compounding impact. This specification allows us to test the difference between ​​β​1​​​ 
and ​​β​2​​​. This also tests the validity of a nonattainment “switcher” approach which 
assigns PM2.5 nonattainment areas that are also PM10 nonattainment areas into the 
control group (e.g., Currie, Voorheis, and Walker 2023), as it implicitly assumes that ​​
β​2​​  =  0​.

38 Note that ​​PM​i,pre​​​ is absorbed in the fixed effect in the equation in levels from which the above equation has 
been derived. That is: ​​PM​​2.5​i,t​​​​  =  ​β​1​​ ​NA​it​​ + ​β​2​​ ​NA​it​​ ​PM​i,pre​​ + ​δ​i​​ + ​λ​t​​ + ​ξ​i,t​​​, where the uninteracted effect ​​PM​i,pre​​​ is 
co-linear with fixed effect ​​δ​i​​​.
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III.  Results: The Effect of CAA Nonattainment on PM2.5

We now compare estimated effects of 2005 nonattainment designations on sub-
sequent changes in PM2.5 concentrations using the four approaches outlined above. 
Our baseline period is the three-year average over 2001–2003. Our posttreatment 
periods are five (2006–2008) and ten (2011–2013) years later.

A. Large Effects Suggested by Difference-in-Differences (DiD)

Standard DiD estimation suggests large and statistically significant reductions of 
PM2.5 concentrations in nonattainment areas. This is shown in column 1 of Table 1. 
The coefficient estimate (​​β ˆ ​​) in panel A shows that nonattainment tracts experienced 
a 1.5 μg / m3 larger reduction in PM2.5 than attainment tracts between 2001–2003 
and 2006–2008 (equal to the gap between the red and blue dashed lines in Figure 4). 
column 5 restricts the sample to only those counties for which RVs are available. 
Results are virtually the same for this smaller sample, indicating no sample selection 
issues. All results in Table 1 are also virtually identical if we use interpolated pop-
ulation weights from the 2000, 2010, and 2020 census instead of the 2010 census 
population weights.39

Given the issues regarding the parallel trends assumption underlying these esti-
mates discussed above, we conduct ‘placebo tests’ shown in panel B. Here, we limit 
our sample to only tracts in attainment areas, i.e., those areas with ​RV  ≤  15​, and 
assign a placebo treatment to all those areas with a RV above the median for that 
group (​RV  ≥  11.5​). We then reestimate the DiD model. As shown in panel B, col-
umns 1 and 5, standard DiD suggests that the placebo treatment was associated with 
significant improvements in air quality (−0.3 and −0.5 μg / m3), providing further 
evidence that the DiD approach may be biased.40

B. Smaller but Still Positive Effects with DiDwb, MDiD, and RD

Results from our three alternative approaches are shown in the remaining col-
umns of Table 1. Column 2 shows the estimates for DiDwb, which adds a control for 
baseline PM2.5 to the DiD regression. The coefficient estimate for ​​β ˆ ​​ falls to −0.49 in 
column 2, which implies that the correlation between time trend and baseline levels 
accounts for much of the DiD estimate.41

Column 3 shows estimates from our matched difference-in-differences approach, 
using baseline PM2.5 as the sole matching variable (M1DiD). Column 4 matches 

39 Results available from authors upon request.
40 As in panel A, column 1 includes unclassifiable areas (without RV) in attainment as per EPA rules, while 

column 5 drops all areas without RV. Similar results can be seen in Supplemental Appendix Table A.2, where we 
reestimate the same DiD model on subsets of areas that are successively closer to the treatment cutoff (​RV  =  15​). 
Treatment effect estimates fall as we narrow the window, indicating that there may be a time trend that is unrelated 
to treatment status but correlated with EPA-registered PM2.5 values. If we only drop the nonattainment area with the 
highest RV (Los Angeles area), corresponding to the observations in the right of Figure 4, we obtain a DiD estimate 
of −0.9 instead of the reported −1.5.

41 Note that our DiDwb estimate is based on the exact same sample with the same weights as in DiD, while our 
other alternative estimates make sample or weighting restrictions instead of adding controls.
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Table 1—Nonattainment Status and Changes in ​​PM​2.5​​​

ATT LATE

All tracts With RV Optimal bandw.

DiD 
(1)

DiDwb 
(2)

M1DiD 
(3)

M2DiD 
(4)

DiD 
(5)

RD0 
(6)

RD1 
(7)

Part A. Effect from 2001–03 to 2006–08

Panel A. Homogeneous treatment effect: from 2001–03 to 2006–08
Nonattainment −1.47 −0.49 −0.41 −0.40 −1.48 −0.36 −0.023

(0.34) (0.098) (0.16) (0.20) (0.35) (0.28) (0.40)

Observations 72,043 72,043 28,291 28,909 47,962 7,026 10,459

Panel B. Placebo treatment effect: from 2001–03 to 2006–08
Nonattainment −0.32 −0.12 −0.060 0.018 −0.49 −0.11 −0.26

(0.12) (0.11) (0.12) (0.12) (0.14) (0.21) (0.30)

Observations 49,357 49,357 20,388 20,127 25,276 2,143 5,411

Panel C. Heterogeneous treatment effect: from 2001–03 to 2006–08
Nonattainment 4.82 3.85 1.83 3.39 4.81 3.79 3.73

(0.81) (0.83) (0.30) (0.66) (0.82) (0.76) (0.62)
NA×Baseline −0.42 −0.33 −0.16 −0.26 −0.42 −0.29 −0.26

(0.060) (0.062) (0.020) (0.048) (0.060) (0.047) (0.032)

Observations 72,043 72,043 28,291 28,909 47,962 7,026 10,459
Implied ATE −1.47 −1.06 −0.55 −0.57 −1.48 −0.57 −0.21
10th pct −0.32 −0.16 −0.11 0.16 −0.32 0.23 0.52
90th pct −3.56 −2.70 −1.34 −1.89 −3.57 −2.02 −1.51

Part B. Effect from 2001–03 to 2011–13

Panel D. Homogeneous treatment effect: from 2001–03 to 2011–13
Nonattainment −2.35 −0.56 −0.44 −0.55 −2.44 −1.26 −1.11

(0.27) (0.096) (0.096) (0.11) (0.28) (0.35) (0.37)

Observations 72,043 72,043 28,291 28,909 47,962 6,137 25,856

Panel E. Placebo treatment effect: from 2001–03 to 2011–13
Nonattainment −0.95 0.015 0.19 0.15 −1.57 0.23 0.43

(0.13) (0.12) (0.14) (0.14) (0.15) (0.20) (0.31)

Observations 49,357 49,357 20,388 20,127 25,276 1,046 4,626

Panel F. Heterogeneous treatment effect: from 2001–03 to 2011–13
Nonattainment 3.91 −0.24 4.78 4.57 3.83 4.45 3.38

(0.41) (0.42) (0.44) (0.50) (0.41) (0.79) (0.78)
NA×Baseline −0.42 −0.024 −0.37 −0.36 −0.42 −0.40 −0.31

(0.029) (0.032) (0.033) (0.036) (0.029) (0.053) (0.053)

Observations 72,043 72,043 28,291 28,909 47,962 6,137 25,856
Implied ATE −2.35 −0.61 −0.78 −0.79 −2.44 −1.54 −1.21
10th pct −1.20 −0.54 0.24 0.19 −1.29 −0.44 −0.37
90th pct −4.43 −0.73 −2.63 −2.58 −4.52 −3.54 −2.74

Notes: The table shows coefficient estimates for the treatment effect of nonattainment status on the change in ​​PM​2.5​​​ 
levels between the pre- and posttreatment periods. Each panel × column combination is from a separate regression 
as described in the text. Column 1 uses simple DiD; column 2 adds controls for baseline ​​PM​2.5​​​ (2001–03); column 
3 runs DiD using a sample matched (1-to-1) on baseline ​​PM​2.5​​​, column 4 matches on baseline ​​PM​2.5​​​, tract popula-
tion and population density (both 2000); column 5 again uses simple DiD but with the limited sample of areas for 
which an EPA-registered ​​PM​2.5​​​ value exists; columns 6 and 7 use the limited sample based on optimal bandwidth 
selection in a regression discontinuity framework. Standard errors in parentheses are clustered at the county level. 
All results based on Meng et al. (2019b).
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on baseline PM2.5, population and population density (M2DiD). Both estimates are 
substantially smaller then the DiD estimates, with a reduction of about 0.4 μg / m3 
following nonattainment designation. This effect corresponds to a 3 percent decrease 
from average concentrations in the pretreatment period.

Columns 6 and 7 show results for our regression discontinuity approaches RD0 
and RD1.42 The point estimate for RD0 is similar to our other strategies, and close 
to zero for RD1, but both estimates are imprecise. Due to the smaller number of 
observations around the cutoff, we lack statistical power resulting in larger standard 
errors. However, effect estimates in both RD0 and RD1 are highly statistically sig-
nificant when accounting for heterogeneity in panel C, or when considering longer 
term impacts in panel D, in line with the dynamic effects shown in Supplemental 
Appendix Figure A.9.

Overall, our preferred specification is M1DiD. It is almost identical to M2DiD, 
which implies that adding additional matching variables provides little additional 
benefits to remove bias. M1DiD includes a broader set of tracts and counties than 
either RD approaches resulting in higher statistical power, but excludes outliers 
too far from the cutoff that are included in DiDwb, thus presenting a reasonable 
compromise.

Two points stand out when comparing the four approaches. First, the effect 
sizes for our three alternative approaches shown in panel A are less than a third the 
size (around −0.4 to −0.5) of the standard DiD estimates (−1.5) across the board. 
To statistically test for equality of coefficients across these models, in panel A of 
Table 1 we use a cluster-bootstrap by drawing counties with replacement by attain-

42 Graphical representations of these RD approaches are provided in Supplemental Appendix Figure A.10. We 
provide results for additional bandwidths in Supplemental Appendix Table A.2.

Figure 6. Distribution of Estimates from Bootstraps

Notes: Both panels show distributions of cluster-bootstrapped estimates of our different models corresponding 
to panel A in Table 1 using a triangle kernel smoother. We draw counties to allow for clustering with replace-
ment based on two strata (attainment and nonattainment), estimate the different models, and repeat the process 
10,000 times. Panel A shows the distribution of estimates across the bootstraps for each model. Panel B shows the 
distribution of the difference between DiD and our alternative models across bootstraps. The area above zero rep-
resents the p-value of a test of equality of coefficients across models. Supplemental Appendix Table A.5 shows 
these p-values for two-sided tests (i.e., doubling the area in the tail to the right of zero). Based on data from Meng 
et al. (2019b).
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ment and nonattainment strata. Figure 6, panel A shows the resulting distribution of 
estimates across 10,000 draws, showing clearly that the DiD estimates are centered 
at a much lower mean with little overlap with our alternative approaches that are 
centered closer to zero and overlapping with each other. Figure 6, panel B shows the 
distribution of the differences between the DiD estimate and those of each of our 
models. The corresponding p-values for all pairwise two-sided tests for equality of 
coefficients are shown in Supplemental Appendix Table A.5. All estimates from our 
alternative models are significantly different from the DiD estimates at the 1 per-
cent level except the RD1 model due to noisier estimates (see Figure 6, panel A). 
Conversely, Supplemental Appendix Table A.5 shows that we cannot reject equality 
of coefficients in all pairwise tests between our alternative models, suggesting that 
they recover a similar effect.

Second, note that the placebo tests in panel B of Table 1 yield smaller and insig-
nificant coefficients for our three alternative approaches. The pattern is similar 
when we use the other two sources of pollution data, as we show in Supplemental 
Appendix Tables A.23 and A.24.

C. Robustness

We next discuss robustness to several concerns for our analysis: (i) spillovers, (ii) 
preceding PM10 nonattainment designation, (iii) additional controls for trends, (iv) 
concurrent air pollution policies, (v) uncertainty of pollution data, and (vi) alterna-
tive models for estimation.

First, we exclude all 300 counties in attainment that share a border with a county 
in nonattainment, to reduce potential bias from spatial spillovers of air quality 
changes. Supplemental Appendix Table A.6 shows that corresponding estimates are, 
if anything, slightly higher suggesting that there may be some small spatial spill-
overs as pollutants can travel across space. However, and importantly, the pattern 
of much lower estimates compared to DiD is similar to our main results. Second, 
the pattern also holds when we focus on counties that switch into nonattainment 
by excluding all areas that were in nonattainment of the NAAQS for PM10 in the 
years leading up to 2005 (71 of 208 PM2.5 nonattainment counties in 2001–04, see 
also Supplemental Appendix Figure A.14), as we show in Supplemental Appendix 
Table A.7. This implies that the bias of standard DiD cannot be explained by cor-
relations with previous CAA rules. We further explore interaction with PM10 non-
attainment by explicitly allowing for heterogeneous treatment effects further below.

Third, the findings remain unchanged when we add further controls, 
which allow for state by period specific time trends in PM2.5 and period by 
quartile-of-tract-population-density specific time trends, as shown in Supplemental 
Appendix Tables A.8 and A.9, respectively.

Fourth, apart from the nonattainment designations under the NAAQS for PM2.5 , two 
separate air quality policies came into effect during our study period: the ​​NO​x​​​ Budget 
Trading Program (NBP) and it’s successor, the Clean Air Interstate Rule (CAIR). 
They target ​​NO​x​​​, ​​SO​2​​​, and Ozone emissions. ​​NO​x​​​ and ​​SO​2​​​ are precursors to PM2.5, 
so that overlap with these policies could partially drive our results. To test this, we 
collect data on regulated facilities under these programs, with details discussed in 
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Supplemental Appendix A.8. Controlling for NBP and CAIR status does not affect 
our estimates either for the DiD case or our alternative DiDwb. On the contrary, the 
estimated effect of those policies depends dramatically on inclusion of PM2.5 non-
attainment controls.

Fifth, our air pollution data comes from reanalysis models where some predictions 
may be more uncertain, e.g., due to larger distances to ground-based air pollution 
monitors. If the measurement error is nonclassical, such that higher PM2.5 regions 
or changes are systematically over- or underestimated, ignoring such uncertainty 
may introduce bias. We address this concern in three ways. First, we use the data 
from van Donkelaar et al. (2021b) that also quantifies the uncertainty for each data 
point from the underlying reanalysis model and raw data. We drop the 30 percent 
of data points with the highest uncertainty and reestimate our models. Second, we 
only keep counties if they or any of their neighboring county contain a ground-based 
monitor. Third, in our most restrictive version with the least observations, we only 
use monitor data directly from EPA (2022a). We repeat the estimation of the first 
part of Table 1 and show that our estimates of both naive DiD as well as of our alter-
native models are robust in Supplemental Appendix Tables A.12 and A.13.

Sixth, we provide results from Synthetic Difference-in-Differences (SDiD) esti-
mation recently proposed by Arkhangelsky et al. (2021). SDiD weights control units 
(and pretreatment years) to minimize the mean difference in time trends between 
treated and control groups. Supplemental Appendix A.10 shows that SDiD produces 
very similar estimates (−0.41 μg / m3) as our three alternatives.

D. Heterogeneous Treatment Effects Vary with Baseline Pollution Levels

Our results so far have focused on the average treatment effect of nonattainment 
designation. We now investigate the possibility of treatment heterogeneity. To do so, 
we repeat all of the above estimations but add an interaction term between nonat-
tainment status and baseline levels of PM2.5 in 2001–2003, following equation (6). 
The results are shown in panel C of Table 1 and indicate that there is indeed sig-
nificant treatment heterogeneity. The negative interaction coefficient implies that 
more polluted tracts experience larger improvements following nonattainment des-
ignation. In our M1DiD specification, the improvement in PM2.5 concentrations is 
estimated to be 0.1 μg / m3 at the tenth percentile of baseline pollution levels, while 
it is 1.3 μg / m3 at the ninetieth percentile.43 The heterogeneous treatment effects are 
in line with previous findings by Auffhammer, Bento, and Lowe (2009) and others 
discussed above. One possible explanation may be regulatory attention on those 
areas triggering nonattainment status and where population health is most at risk.

The implied (local) average treatment effects calculated from the two reported 
coefficients are also shown in the table and, again, are significantly smaller than 
those produced by standard DiD. Compared to panel A, the coefficients in panel C 

43 For estimating the interaction effects, we only use the units within the sample for each column, e.g., within 
the RD-chosen window. Note that we use the same overall tenth and ninetieth percentiles of baseline pollution for 
calculating the corresponding effects at these percentiles across columns for consistency, extrapolating for those 
models that use a smaller window. While the 90th percentile within the RD0 window is lower than the overall 
(15.7 versus 20), there is substantial variation in tract level pollution even within the county-based window.
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on nonattainment and the interaction are also highly statistically significant for all 
our strategies, a property we will rely on when employing instrumental variable 
regressions below. This effect heterogeneity replicates with the other two sources of 
pollution data, as we show in Supplemental Appendix Tables A.23 and A.24.

E. Larger Treatment Effects with Previous PM10 Nonattainment Status

We next allow for heterogeneous treatment effects by previous PM10 nonattain-
ment status as in equation (7). Figure 7 shows the effect of 2005 PM2.5 nonattain-
ment by previous 1990 PM10 nonattainment status. Note that we additionally control 
for flexible trends by previous PM10 nonattainment status, so the effect shown is the 
marginal effect of PM2.5 nonattainment status. For both, the naive DiD model, as 
well as our alternative models, the PM2.5 nonattainment effect is significantly larger 
for those areas that have previously been in PM10 nonattainment, with differences 
significant at the 1 percent level (Supplemental Appendix Table A.14 shows results 
including the RD models omitted here because they do not always include areas 
with both treatment groups).44

44 The average treatment effect across both groups in Table 1 is between the two heterogeneous effects shown 
in Figure 7. Importantly, the effect heterogeneity here does not merely capture heterogeneity from baseline air 
quality discussed in the previous section. The pattern between the two groups is the same if we additionally allow 
for heterogeneous treatment effects by baseline air quality as in equation (6), which additionally shows that within 
the two groups, the initially more polluted tracts see larger air quality improvements.

Figure 7. Heterogeneous ​​PM​2.5​​​ Nonattainment Treatment Effect by Previous ​​PM​10​​​ Nonattainment 
Status

Notes: The figure shows the effect of the 2005 nonattainment designation on ​​PM​2.5​​​ from 2001–03 to 2006–08 for 
four models. The two estimates for each of the four models show effects of ​​PM​2.5​​​ nonattainment for those areas that 
have no previous ​​PM​10​​​ nonattainment on the left, and for those areas that have previous ​​PM​10​​​ nonattainment on 
the right. The estimates come from a single regression with appropriate identifiers for the groups and a control for 
trends based on previous ​​PM​10​​​ nonattainment designation alone, so the estimates can be interpreted as the marginal 
effects of ​​PM​2.5​​​ nonattainment designation for the two groups. The two estimates are significantly different from 
each other at the 1 percent level for each model. Based on data from Meng et al. (2019b).
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Importantly, these results show that not only areas that switched from previous ​​
PM​10​​​ attainment to PM2.5 nonattainment see an effect of PM2.5 nonattainment. On 
the contrary, areas in previous PM10 nonattainment see an even larger effect of PM2.5 
nonattainment. This explains why assigning this latter group into the control group 
as in Currie, Voorheis, and Walker (2023) flattens pre-trends and lowers estimated 
effects of PM2.5 nonattainment, as areas with the largest treatment effect are added 
to the control group. Nevertheless, as we show in Supplemental Appendix A.13B, 
even when assigning these areas into the control group, adjusting for confound-
ing trends is essential, as DiD still significantly overestimates nonattainment effects 
compared to DiDwb (Supplemental Appendix Table A.18).45

F. Effects over the Longer Time Horizon to 2011–13

In part B of Table 1, we repeat the analysis of part A but use the years 2011–13 
as end point instead of 2006–08. The idea is to test for impacts of nonattain-
ment designation that may take some time to take effect, or that are cumulative. 
Indeed, all estimates become larger, implying slightly bigger effects of the policy 
over the ten year period than the five year period. The large difference between  
DiD (−2.3 μg / m3) and our alternative approaches (−0.4 to −1.3 μg / m3) also per-
sists over this longer horizon.46

IV.  Implications for Equity and Pollution Damages

We have shown that different estimation strategies yield substantially differ-
ent estimates for the effect of nonattainment designation on PM2.5 concentrations. 
Difference-in-differences (DiD) estimates suggest the largest improvements, likely 
due to bias. Our three alternative methods—controlling for baseline pollution 
(DiDwb), matched difference-in-differences (MDiD), and regression discontinu-
ity (RD)—show substantially smaller, though nonzero effects. In this section, we 
show how the differences in effect sizes matter for two important applications: one 
focused on structural pollution exposure disparities and environmental justice, and 
the other focused on estimating pollution damages as capitalized in house prices.

A. The Role of the CAA in Shrinking Racial and Urban-Rural Pollution Gaps

We first focus on disparities in PM2.5 exposure in the United States and the 
contribution of the 2005 CAA NAAQS in reducing these disparities. We begin 
with the mean pollution exposure gap between Black and White Americans, 
which has been well documented (Jbaily et al. 2022; Currie, Voorheis, and Walker 
2023).47 Currie, Voorheis, and Walker (2023) show that this Black-White PM2.5 gap 

45 These patterns also persist when we instead drop these areas as in Supplemental Appendix Table A.7.
46 The DiD estimate is equal to the gap between the red and blue dashed lines in Supplemental Appendix 

Figure A.2. The pattern is similar when using the other two pollution data sources, see Supplemental Appendix 
Tables A.23 and A.24.

47 We use our tract level PM2.5 concentrations (which are already population weighted by census block pop-
ulations) and aggregate them up to the national level using tract level Black and White non-Hispanic population 



26	 AMERICAN ECONOMIC JOURNAL: ECONOMIC POLICY� FEBRUARY 2025

fell by 0.6 μg / m3 between 2005 and 2015, and that a substantial portion (61.2 per-
cent) of that narrowing can be attributed to the effects of the 2005 nonattainment 
designations.

In panel A of Table 2 we conduct a similar counterfactual accounting exercise. 
Our data shows that the Black-White PM2.5 gap fell by 0.69 μg / m3 over the ten 
years from 2001–03 to 2011–13. To measure the potential contribution of the CAA 
NAAQS, we use coefficient estimates from Table  1. Our DiD estimates suggest 
that nonattainment designations alone contributed 49 percent to that narrowing, or 

counts as weights. In Supplemental Appendix A.12 we show that our PM2.5 exposure levels are virtually identical 
to those in Jbaily et al. (2022), and show the same in Supplemental Appendix A.13A for Currie, Voorheis, and 
Walker (2023).

Table 2—Pollution Disparities–Counterfactual Gap Analysis

​​PM​2.5​​​ exposure Black-White gap

Period Black White (levels) (change) DiD DIDwb M1DiD M2DiD RD0 RD1

Panel A. Black-White pollution gap
Contribution of CAA (in %) [homogeneous effect]

2001–2003 13.3 11.62 1.69
2006–2008 12.15 10.57 1.58 −0.11 193 64 53 52 47 3
2011–2013 9.64 8.63 1.00 −0.69 49 12 9 12 26 23

Contribution of CAA (in %) [heterogeneous effect]
2001–2003 13.3 11.62 1.69
2006–2008 12.15 10.57 1.58 −0.11 287 213 108 135 140 86
2011–2013 9.64 8.63 1.00 −0.69 64 14 30 29 47 36

Contribution of CAA (in %) [+race interactions]
2001–2003 13.3 11.62 1.69
2006–2008 12.15 10.57 1.58 −0.11 130 57 86 95 −23 −52
2011–2013 9.64 8.63 1.00 −0.69 68 18 45 41 49 47

​​PM​2.5​​​ exposure Urban-Rural gap

Urban Rural (levels) (change)

Panel B. Urban-Rural pollution gap
Contribution of CAA (in %) [homogeneous effect]

2001–2003 12.59 10.21 2.38
2006–2008 11.26 9.62 1.64 −0.74 52 17 14 14 13 1
2011–2013 9.28 7.78 1.49 −0.89 70 17 13 16 37 33

Contribution of CAA (in %) [heterogeneous effect]
2001–2003 12.59 10.21 2.38
2006–2008 11.26 9.62 1.64 −0.74 73 54 28 34 35 20
2011–2013 9.28 7.78 1.49 −0.89 87 19 39 38 63 49

Contribution of CAA (in %) [+urban interactions]
2001–2003 12.59 10.21 2.38
2006–2008 11.26 9.62 1.64 −0.74 71 52 32 37 35 21
2011–2013 9.28 7.78 1.49 −0.89 88 20 39 40 63 52

Notes: Left columns show average ​​PM​2.5​​​ exposure of Black, White, Urban and Rural populations, and difference 
between groups, as derived from census block level pollution concentrations and population counts. Right columns 
show the contribution of CAA nonattainment designations in 2005 based on counterfactual calculations that factor 
out nonattainment treatment effects as estimated in columns 1–4, 6, and 7 of Table 1. Population data is from the 
2000, 2010, and 2020 waves of the US census, linearly interpolated for years in between. Pollution data is from 
Meng et al. (2019b).
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64 percent when we allow for heterogeneous treatment effects following panel C of 
Table 1. When we allow for heterogeneous effects by racial composition of census 
tracts—by including additional interaction terms with the share of the tract popula-
tion that was Black in 2000 as well as the interaction between this share and baseline 
pollution levels—the contribution slightly increases to 68 percent. Importantly, our 
alternative estimation strategies all show a role for the CAA NAAQS in narrow-
ing the Black-White pollution gap, but the estimated contribution is considerably 
smaller, often around half the size (between 9 and 26  percent for homogeneous 
treatment effects, 14 and 47 percent with heterogeneous effects, and 18 and 49 per-
cent with additional race interaction terms). A similar pattern is observed for the 
shorter five-year period ending in 2006–08.48

While we look at slightly different time periods and report main results using 
data from Meng et  al. (2019b) instead of Di et  al. (2021), our estimated CAA 
contribution based on standard DiD with heterogeneous effects (68 percent) until 
2011–2013 is broadly in line with the findings in Currie, Voorheis, and Walker 
(2023) of a contribution of 61.2 percent from 2005–2015. As shown in Supplemental 
Appendix A.13A, when we follow the approach of Currie, Voorheis, and Walker 
(2023) based on RIF/Quantile Regressions and their treatment assignment, we 
recover an almost identical 61.1 percent contribution.49 However, as we show in 
Supplemental Appendix A.13B, controlling for confounding trends (i.e., DiDwb) 
in their approach also reduces the CAA contribution to 18.6 percent (Supplemental 
Appendix Table A.19). The same pattern holds when we use their RIF/Quantile 
Regression approach but our treatment assignment, which shows a contribution of 
22.5 percent based on DiDwb much in line with our estimated 24 percent using the 
same data based on Di et al. (2021), in Supplemental Appendix Table A.25.

We next explore spatial pollution gaps between urban and rural residents.50 In 
panel  B of Table  2, we document a similar role of CAA rules in narrowing the 
Urban-Rural gap in PM2.5. Urban centers, especially those with high population 
densities and large traffic volumes, are arguably those areas with the highest particu-
late matter concentrations and tend to have different socio-economic characteristics 
than rural counterparts. We observe a large Urban-Rural PM2.5 gap, even larger than 
the Black-White gap by around 40  percent. The Urban-Rural gap also narrowed 
substantially from 2001–2003 to 2011–2013. Again, 2005 nonattainment designa-
tions account for some of this narrowing, with DiD estimates suggesting the largest 
contribution (70–88 percent) while the other approaches yield significantly smaller 
estimates (13–63 percent).

Overall, our results show that the NAAQS for PM2.5 enacted in 2005 signifi-
cantly contributed towards reducing pollution exposure disparities. Our results also 
highlight the sensitivity of such analyses to the underlying method of identifying 

48 A contribution of more than 100 percent as is the case in all DiD estimates implies that the counterfactual 
gap would have increased.

49 In Supplemental Appendix A.13B we also show that other minor data differences to Currie, Voorheis, and 
Walker (2023) are negligible.

50 We do so by calculating weighted average exposure levels using the number of urban and rural residents in 
each tract as weights. These classifications are based on the 2000 census definition which classifies blocks as urban-
ized areas (UAs) and urban clusters (UCs) based on population density.
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treatment effects, demonstrating that the contribution may have been substantially 
smaller than suggested by standard DiD estimates. While Table 2 includes changes 
in population distributions (interpolating linearly between 2000, 2010, and 2020 
census waves), we show in Supplemental Appendix Table A.20 that the results hold 
when population is fixed at 2010 levels switching off any population sorting chan-
nels. Supplemental Appendix Tables A.25 and A.26 show that the patterns are sim-
ilar when using the two alternative pollution data sources.

B. Instrumenting Pollution with CAA Nonattainment to Estimate Effects on House 
Prices

So far, we have focused on air pollution as outcome variable, and the role of 
the CAA rules in reducing PM2.5 concentrations. We now turn to the damages of 
PM2.5 exposure as capitalized in residential real estate values, using nonattainment 
designations as instrument for pollution. To do so, we estimate the following simple 
model to describe the change in the log of house prices in tract ​i​:

(8)	 ​Δ​Y​i​​  =  α + θΔ​PM​i​​ + Δ​μ​i​​​,

which is equivalent to estimating the relationship in levels with tract and period fixed 
effects. We estimate this equation via OLS or IV, using nonattainment as instrument 
for ​Δ​PM​i​​​ using either DiD or our three alternative approaches.

Following the literature that uses nonattainment instruments for pollution, this 
assumes that nonattainment designations have no direct impact on our outcome, 
house prices, apart from their impact through pollution reductions. This would be 
violated if there are, for example, substantial employment effects from regulation 
(Walker 2013) that also impact house prices, or if nonattainment and attainment 
areas experience different house price trends for other reasons.51 In Supplemental 
Appendix A.16, we show a version of the below analysis with additional commut-
ing zone fixed effects in equation (8) that should capture most of the labor market 
effects. This changes the interpretation of coefficients and estimates become smaller, 
but the relative pattern between different IV estimates discussed below are robust.52

Two mechanisms could explain why we expect the results to differ between stan-
dard DiD and our three alternative estimation strategies. First, variation in the esti-
mates of nonattainment effects in the ‘first stage’ (Table 1) will mechanically alter 
the estimated effect of pollution on house prices. Second, there may be differences 
in house price trends that co-vary with baseline pollution. For example, we could 
imagine that polluted urban centers experienced a different evolution of house prices 

51 While the exclusion restriction cannot be tested conclusively, we see no significant differences in pre-trends 
in the house price event study equivalent to Table 3 shown in Supplemental Appendix Figure A.20.

52 A specification with commuting zone fixed effects uses only variation in PM2.5 induced by the interaction 
of nonattainment designations and baseline PM2.5, while binary nonattainment designations are absorbed. If non-
attainment designations affect house prices through employment or similar effects at the commuting zone level, 
those will no longer be a source of bias. But doing so also changes the interpretation of our estimates. We no longer 
capture house price changes due to different pollution trajectories between commuting zones, but only differential 
trajectories of tracts within a given commuting zone.
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over time.53 Such biases in the reduced-form relationship between nonattainment des-
ignations and house price growth could work in both directions. Our three estima-
tion strategies also address this second bias. DiDwb directly controls for such trends 
in house prices, while MDiD and RD both compare treated with control units that 
have similar baseline pollution levels and thus similar associated trends. As we 
show in Supplemental Appendix Table A.22, there are only small differences in the 
reduced-form relationships across empirical strategies, suggesting that the bias mainly 
operates through the first mechanism linked to the first stage. To increase instrument 
power, we include the set of instruments that exploit the two types of treatment effect 
heterogeneity: the heterogeneity in panels C and F of Table 1, as well as the heteroge-
neity based on previous PM10 nonattainment treatment status as in Figure 7.

Column 1 in Table 3 shows results when running OLS without instruments, and 
implies that a one unit increase in PM2.5 is associated with a reduction in house 
prices by 4 percent (​exp​(− 0.04)​ − 1​). Instrumenting PM2.5 with nonattainment sta-
tus corresponding to the simple DiD approach in column 2 shows an effect that is 
larger implying a semielasticity of around 6 percent. This is expected as pollution 
may exhibit classical measurement error and is correlated with desirable factors 
such as economic activity, introducing attenuation and upward bias. The remainder 
of Table 3 shows corresponding estimates from our three approaches that address 
the time trend that is correlated with baseline PM2.5. Column  3 shows estimates 
that include baseline PM2.5 as a control (DiDwb-IV), columns 4 and 5 are based on 
matched DiD (MDiD-IV), and in columns 6 and 7 we use the regression disconti-
nuity strategy (RD-IV).

53 See also Sanders and Stoecker (2015), Sanders, Barreca, and Neidell (2020) who address differential trends 
in their health outcome variables when estimating the impact of pollution.

Table 3—Pollution Damages–Instrumental Variable Comparison

OLS 
(1)

DiD-IV 
(2)

DiDwb-IV 
(3)

M1DiD-IV 
(4)

M2DiD-IV 
(5)

RD0-IV 
(6)

RD1-IV 
(7)

Panel A. Effect of ​​PM​2.5​​​ increases on house price index growth 2001–03 to 2006–08
​ΔPM2.5​ −0.040 −0.064 −0.15 −0.12 −0.10 −0.16 −0.17

(0.017) (0.0080) (0.011) (0.029) (0.011) (0.11) (0.048)

Observations 54,529 54,529 54,529 21,152 21,693 5,087 7,937
K-P F statistic 72.8 22.8 25.0 26.3 47.5 55.1
Elasticity −0.48 −0.77 −1.81 −1.44 −1.26 −1.98 −2.00

Panel B. Effect of ​​PM​2.5​​​ increases on house price index growth 2001–03 to 2011–13
​ΔPM2.5​ −0.012 −0.016 −0.035 −0.033 −0.045 −0.032 −0.022

(0.0092) (0.012) (0.041) (0.019) (0.017) (0.040) (0.031)

Observations 54,378 54,378 54,378 21,062 21,608 4,496 19,035
K-P F statistic 305.0 25.1 135.8 114.9 146.7 145.9
Elasticity −0.14 −0.19 −0.42 −0.39 −0.54 −0.39 −0.26

Notes: The dependent variable is the change in the logarithm of the house price index. ​ΔPM2.5​ is the change in ​​
PM​2.5​​​ since 2001–03 in ​μg / ​m​​ 3​​, instrumented by CAA nonattainment status for ​​PM​2.5​​​, allowing for heteroge-
neous effects in the instrument by previous ​​PM​10​​​ nonattainment status and by baseline ​​PM​2.5​​​ levels in 2001–03. 
First-stage specifications in Columns 2–7 correspond to Columns 1–4, 6, and 7 in Table 1. Standard errors in paren-
theses are clustered at the county level. Pollution data is from Meng et al. (2019b).
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The IV estimates based on our three alternative approaches yield larger pollution 
damages, around 50 percent to 150 percent larger than those based on the standard 
DiD-IV. Our preferred approach for this setting is M1DiD-IV, shown in column 4, 
which implies that a one unit increase in PM2.5 lowers house prices by 11 percent. 
This effect is almost twice that in the standard DiD-IV. Our house price effects are 
also larger than those found for previous NAAQS targeting coarser categories of 
particles. While this could in part be due to the finest particles mattering more or 
that house prices have become more sensitive to pollution over time, our results 
show that it could also be due to the downward bias in the standard DiD-IV esti-
mate, which is more in line with previous results.54 This implies that while simple 
DiD may overestimate the effect of nonattainment on PM2.5, it may underestimate 
the effect of PM2.5 on house prices when nonattainment status is used as an instru-
ment for PM2.5. A similar pattern holds when we extend the posttreatment period 
to 2011–13. Again, the DiDwb-IV, MDiD-IV and RD-IV yield larger estimates of 
pollution damages as capitalized by house prices. The pattern is similar when we 
use the other two sources of pollution data, as we show in Supplemental Appendix 
Tables A.27 and A.28.

Finally, when we estimate the effect of nonattainment designation on house 
prices directly (reduced form), the results show that house prices in nonattain-
ment areas gained an additional 6 percent on average due to being designated into 
nonattainment.55

V.  External Validity

Our focus so far has been on the PM2.5 rules and we demonstrated the impor-
tance of accounting for trends in pollution that correlate with baseline pollution and 
assignment into treatment. We next examine how likely it is that this insight extends 
to NAAQS beyond the 2005 PM2.5 rules.

The forerunner of the 2005 PM2.5 regulation was the 1990 PM10 regulation, widely 
studied in the literature (e.g., Bento, Freedman, and Lang 2015; Auffhammer, Bento, 
and Lowe 2009). To gauge the issue of confounding trends for this older regulation, we 
use the historic PM2.5 data from Meng et al. (2019b) going back to the 1980s together 
with the 1990 PM10 nonattainment areas.56 First, Supplemental Appendix Figure A.5 
shows that there is indeed a similar pattern where PM2.5 improvement is clearly asso-
ciated with 1987–89 baseline PM2.5 concentrations even in the absence of 1990 PM10 
nonattainment. Second, we estimate the impact of PM10 nonattainment comparing 

54 The implied elasticity of −1.4 is larger than the elasticity of −0.6 in Bento, Freedman, and Lang (2015) who 
study the effects of PM10 on house prices, or the elasticity of around −0.2 to −0.35 reported for TSP (PM100) in 
Chay and Greenstone (2005). Note that the elasticity for the endline 2011–13 is around −0.4, and thus more in 
line with previous estimates, but also 100 percent larger than the elasticity based on simple DiD-IV. Graff Zivin 
and Singer (2023) explore differential capitalization rates by racial groups using micro data, but find similar overall 
effects on house prices based on our proposed approaches.

55 This policy effect is based on the average “reduced form” effect estimated in Supplemental Appendix Table A.22. 
Alternatively, we can calculate an approximation by multiplying the −0.55 μg / m3 reduction in PM2.5 from Table 1 
with the house price effect of −11 percent per μg / m3 from Table 3, which yields an increase of around 7 percent  
(​exp​(− 0.55 × −0.12)​ − 1​).

56 Note that we use PM2.5 concentrations instead of PM10 because of much better spatial coverage due to Meng 
et al. (2019b). PM2.5 is highly correlated with PM10 as it is a subset of PM10.
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1987–89 and 1991–93 analogous to our main analysis for the PM2.5 rules. Table 4 
shows that naive DiD has a similar upward bias (column 1), while DiDwb, M1DiD 
and M2DiD have a lower estimated nonattainment impact of around half the size.57 
This suggests that our insights are likely just as relevant for the earlier 1990 PM10 
standards.

Apart from the closely related 1990 PM10 rules, the problem of correlated trends 
may apply more broadly to NAAQS and related policies. Indeed, Greenstone (2004) 
mentions possible “mean reversion” going back to the SO rules in the 1970s and 
Clay et  al. (2021) show that to-be-treated units were on different trends for the 
original CAA in 1970. In our robustness Section IIIC, we briefly discuss the NBP 
and CAIR to rule them out as possible confounding concurrent air quality policies. 
We can, however, also use the data on NBP and CAIR treatment to evaluate whether 
controlling for trends based on baseline pollution alters the estimated effect of NBP 
and CAIR designation per se. Supplemental Appendix Table A.11, panel C and D 
show that, in contrast to simple DiD, a DiDwb approach produces a much smaller 
effect of NBP or CAIR treatment on subsequent PM2.5 levels. Controlling for base-
line trends in Ozone has little effect on estimated effects on Ozone levels, how-
ever, suggesting that confounding trends for PM2.5 may be particularly problematic 
(panel  E).58 Finally, we use the comprehensive EPA data on all NAAQS nonat-
tainment areas (EPA 2022b) to focus on those areas which have consistently been in 
attainment, i.e., were never subject to any NAAQS nonattainment regulation in history 
and also not subject to the NBP or CAIR. Even in this subset of “never treated” areas, 
we document that there are differential trends in air quality improvements by baseline 
pollution. Using our PM2.5 data from 1981 (Meng et al. 2019b), Figure 8, panels A, B, 
and C show that baseline PM2.5 on the horizontal axes predicts 10-year improvements 
(​− ΔP​M​2.5​​​) on the vertical axes, akin to Figure 5. Panel D plots coefficients from a 

57 We use the years 1987–89 as baseline here. We do not use an RD framework here due to lack of access to 
EPA-registered PM10 values for the 1990 regulation.

58 Panels D and E also replicate the results from Deschênes, Greenstone, and Shapiro (2017), see Supplemental 
Appendix A.8.

Table 4—The Effect of 1990 ​​PM​10​​​ Nonattainment Designation on ​​PM​2.5​​​ 
Concentrations

DiD DiDwb M1DiD M2DiD
(1) (2) (3) (4)

Homogeneous treatment effect: from 1987–89 to 1991–93
Nonattainment −0.75 −0.37 −0.27 −0.46

(0.29) (0.056) (0.26) (0.31)

Observations 72,043 72,043 20,174 22,094

Notes: The table shows coefficient estimates for the treatment effect of nonattainment status 
with the 1990 ​​PM​10​​​ NAAQS (instead of the 2005 ​​PM​2.5​​​ NAAQS) on the change in ​​PM​2.5​​​ lev-
els between the pre- and posttreatment periods of 1987-89 and 1991-93, respectively. Each col-
umn is from a separate regression, where column 1 uses simple DiD, column 2 adds controls 
for baseline ​​PM​2.5​​​ (1987–89), column 3 runs DiD using a sample matched (1-to-1) on base-
line ​​PM​2.5​​​, and column 4 matches on baseline ​​PM​2.5​​​, tract population and population density 
(both 2000). Standard errors in parentheses are clustered at the county level. Pollution data is 
from Meng et al. (2019b).
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regression of annual PM2.5 levels on 1981–83 baseline PM2.5, and shows a general 
trend correlated with baseline pollution in the ‘never treated’ group. This suggests 
that the issue of differential trends that we identity is relevant beyond our focus on 
the 2005 rules, as the “never treated” group is likely to be a control group in most 
analyses of CAA policies.59

The issue of correlated trends is often not accounted for in the literature. There 
are few exceptions that address possible confounding trends which, however, 
have no explicit discussion of bias (Greenstone 2004; Chay and Greenstone 2005; 
Auffhammer, Bento, and Lowe 2009; Bishop, Ketcham, and Kuminoff 2023). 
Greenstone 2004 controls for and matches on baseline levels for analyzing the 

59 Colmer et al. (2020) show a convergence of pollution concentrations, but for the entire United States, not just 
the “never treated” group.

Figure 8. Long-Running Correlation between Baseline Pollution and Pollution Changes

Notes: Panels A, B, and C plot tract level mean ​​PM​2.5​​​ concentrations in 1981–83, 1991–93, and 2001–03, respec-
tively, on the horizontal axes, and 1985–1995, 1995–2005, and 2005–2015 improvements in ​​PM​2.5​​​ concentrations 
on the vertical axes. Panel D shows interaction coefficients estimated in a tract-year panel regression with ​​PM​2.5​​​ 
concentrations as dependent variable. The plotted estimates are for tract level baseline ​​PM​2.5​​​ (1981–83 average) 
interacted with year dummies with 95 percent confidence bands based on standard errors clustered at the county 
level. The figure is based on data from Meng et al. (2019b).
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1970s SO regulation. Chay and Greenstone (2005) use a variant of regression dis-
continuity with manual window selection to study TSP rules in the 1970s–80s (see 
also Sanders and Stoecker (2015). Auffhammer, Bento, and Lowe (2009) include 
monitor-specific time trends in their analysis of the 1990 rules for PM10, and 
Bishop, Ketcham, and Kuminoff (2023) control for baseline PM2.5 when exploiting 
nonattainment designations to estimate PM2.5 effects on dementia prevalence in a 
cross-sectional analysis. However, it remains common to estimate nonattainment 
effects without adjusting for confounding trends by baseline pollution, including in 
the growing literature focusing on PM2.5 nonattainment or the previous PM10 or TSP 
nonattainment designations (e.g., Grainger 2012, Isen, Rossin-Slater, and Walker 
2017, Sanders, Barreca, and Neidell 2020, Colmer and Voorheis 2021, Colmer et al. 
2022, Hollingsworth et al. 2022, Currie, Voorheis, and Walker 2023).

For practitioners, our findings show that it is important to take into account trends 
based on baseline pollution. This implies adding controls (or matching on) baseline 
pollution levels when using differenced outcomes, or allowing for interactions between 
baseline levels and year dummies in a panel fixed effect settings. While it may depend 
on context, our findings also imply that nonattainment areas that have previously been 
in nonattainment should either be kept in the treated group (possibly with a heteroge-
neous treatment effect) or dropped, but not assigned into the control group.

VI.  Conclusion

Did the National Ambient Air Quality Standards for fine particulate matter pol-
lution introduced in 2005 trigger air quality improvements? Our results show that 
areas in nonattainment of the standards indeed experienced faster reductions in 
PM2.5 levels following regulation. This is in line with the empirical literature eval-
uating earlier iterations of CAA rules (Currie and Walker 2019; Aldy et al. 2022).

We find, however, that difference-in-differences (DiD) estimation tends to over-
state the achieved pollution reductions. This bias is driven by a correlation between 
baseline levels and changes of pollution, even in the absence of nonattainment 
designations. We propose three alternative approaches that address this source of 
bias: DiD with added controls for baseline pollution trends (DiDwb), matched DiD 
(MDiD), and regression discontinuity designs (RD). All three produce similar esti-
mates which are less than half the size of those produced by standard DiD. The 
strategies are easy to implement and our results imply that it may be worth including 
them in assessments of CAA nonattainment rules, or when using CAA nonattain-
ment designations as instrument for air pollution.

We further show that the choice of estimation strategy can have important impli-
cations for the role of the CAA with regards to pollution exposure disparities and 
environmental justice. We find the 2005 CAA rules likely contributed to the narrow-
ing of the Urban-Rural and Black-White gaps in PM2.5 exposure, but less so than 
DiD estimates would suggest. Similarly, the choice of empirical strategy matters 
when estimating pollution damages with nonattainment instruments. As we show 
for the case of house prices, while standard DiD overstates the impact of the regula-
tion on pollution, it understates the impact of pollution when nonattainment is used 
as instrument. Similar differences likely hold in other settings where nonattainment 
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designations are used as instruments, including estimates of health or productivity 
losses.

Our findings provide a cautionary tale when it comes to estimating the effects of 
nonattainment designations which are a central element of Clean Air Act rules. We 
find that nonattainment designations in 2005 cannot be considered random and that 
nonattainment areas likely followed a different time trend than attainment areas. 
Similar time trends are apparent going back to at least the 1980s, suggesting possi-
ble confounding bias for analyses of previous NAAQS.
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